SHINE: Understanding the Physical Connection of the in-situ Properties and Coronal Origins of the Solar Wind with a Novel Artificial Intelligence Investigation
SHINE:通过新颖的人工智能研究了解太阳风的原位特性和日冕起源的物理联系
基本信息
- 批准号:2229138
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Understanding the solar wind is crucial to space weather science and forecasting because the properties of the solar wind plasma affect the local conditions in the space environment around Earth. These conditions are largely the result of the speed, structure, and magnetic fields carried by the solar wind plasma. This project addresses the Solar, Heliospheric, and Interplanetary Environment (SHINE) goal of understanding the solar wind, through research that utilizes modern Artificial Intelligence (AI), Machine Learning (ML) and big data analysis algorithms to analyze space-based and NSF-funded ground based coronagraph observations. The project is led by an early career female scientist and is cross-disciplinary, building a collaboration between solar physicists and data scientists. Graduate and undergraduate student researchers from under-represented groups in STEM will be supported.The project is a four-year research program that applies state-of-the-art AI/ML technology to in-situ solar wind measurements from past, current, and future missions. The goal is to classify solar wind types and to determine their coronal source regions, to understand the physical connection between the solar wind’s in-situ properties and their coronal origins. The team will use available observations from NASA space-based missions including the Advanced Composition Explorer, Wind, Parker Solar Probe, Ulysses and when available, Solar Orbiter (SO) 1. Spectroscopic data from the Solar and Heliospheric Observatory, Solar Terrestrial Relations Observatory, Hinode, Solar Dynamics Observatory and SO will provide magnetic field geometry and basic plasma diagnostics of the solar wind source regions. Furthermore, NSF-funded ground based coronagraphs such as CoMP (2011-2018), MK4 (1998-2013), KCor (2013-today) and, when available, UCoMP2 will be used to provide additional solar context data and plasma diagnostics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解太阳风对于太空天气科学和预测至关重要,因为太阳风血浆的特性会影响地球周围空间环境中的当地条件。这些条件在很大程度上是太阳风血浆携带的速度,结构和磁场的结果。该项目通过利用现代人工智能(AI),机器学习(ML)和大数据分析算法来分析基于空间和NSF资助的基于NSF资助的基于地面的Coronagraph观察的研究,解决了理解太阳风的太阳能,地球环和星际环境(Shine)的目标。该项目由早期职业女科学家领导,并且是跨学科的,建立了太阳能物理学家和数据科学家之间的合作。将支持来自STEM中代表性不足小组的研究生和本科生研究人员。该项目是一项为期四年的研究计划,该计划将最先进的AI/ML技术应用于过去,当前和未来任务的原位太阳风测量。目的是对太阳风类型进行分类并确定其冠状动脉源区域,以了解太阳风的原位特性与其冠状起源之间的物理联系。该团队将使用NASA基于空间的任务的可用观察结果,包括高级构图探索者,风,帕克太阳能探针,尤利西斯,以及如果可用的话,太阳能轨道(SO)1。来自太阳能和地层观测值的光谱数据。地区。 Furthermore, NSF-funded ground based coronagraphs such as CoMP (2011-2018), MK4 (1998-2013), KCor (2013-today) and, when available, UCoMP2 will be used to provide additional solar context data and plasma diagnostics.This award reflects NSF's statutory mission and has been deemed precious of support through evaluation using the Foundation's intellectual merit and broader impacts review 标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Depletion of Heavy Ion Abundances in Slow Solar Wind and Its Association with Quiet Sun Regions
- DOI:10.3390/universe8080393
- 发表时间:2022-07
- 期刊:
- 影响因子:2.9
- 作者:Liang Zhao;E. Landi;S. Lepri;Daniel Carpenter
- 通讯作者:Liang Zhao;E. Landi;S. Lepri;Daniel Carpenter
The S-Web Origin of Composition Enhancement in the Slow-to-moderate Speed Solar Wind
- DOI:10.3847/1538-4357/acc38c
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:B. Lynch;N. Viall;A. Higginson;L. Zhao;S. Lepri;X. Sun
- 通讯作者:B. Lynch;N. Viall;A. Higginson;L. Zhao;S. Lepri;X. Sun
共 2 条
- 1
Liang Zhao其他文献
TSR-GAN: Generative Adversarial Networks for Traffic State Reconstruction with Time Space Diagrams
TSR-GAN:利用时空图进行交通状态重建的生成对抗网络
- DOI:10.1016/j.physa.2021.12678810.1016/j.physa.2021.126788
- 发表时间:2021-122021-12
- 期刊:
- 影响因子:0
- 作者:Kunpeng Zhang;Xiaoliang Feng;Ning Jia;Liang Zhao;Zhengbing HeKunpeng Zhang;Xiaoliang Feng;Ning Jia;Liang Zhao;Zhengbing He
- 通讯作者:Zhengbing HeZhengbing He
A model-based approach for human head-and-shoulder segmentation
基于模型的人体头肩分割方法
- DOI:10.1109/icip.2017.829689610.1109/icip.2017.8296896
- 发表时间:20172017
- 期刊:
- 影响因子:0
- 作者:Xiaowei Deng;Yuxiang Shen;Xiaolin Wu;Liang ZhaoXiaowei Deng;Yuxiang Shen;Xiaolin Wu;Liang Zhao
- 通讯作者:Liang ZhaoLiang Zhao
FLT3L and granulocyte macrophage colony-stimulating factor enhance the anti-tumor and immune effects of an HPV16 E6/E7 vaccine
FLT3L和粒细胞巨噬细胞集落刺激因子增强HPV16 E6/E7疫苗的抗肿瘤和免疫效果
- DOI:10.18632/aging.10249410.18632/aging.102494
- 发表时间:2019-122019-12
- 期刊:
- 影响因子:0
- 作者:Zhenzhen Ding;Hua Zhu;Laiming Mo;Xiangyun Li;Rui Xu;Tian Li;Liang Zhao;Yi Ren;Yunsheng Xu;Rongying OuZhenzhen Ding;Hua Zhu;Laiming Mo;Xiangyun Li;Rui Xu;Tian Li;Liang Zhao;Yi Ren;Yunsheng Xu;Rongying Ou
- 通讯作者:Rongying OuRongying Ou
Synthesis of thermoresponsive nonconjugated fluorescent branched poly(ether amide)s via oxa-Michael addition polymerization
通过 oxa-Michael 加成聚合合成热响应性非共轭荧光支化聚醚酰胺
- DOI:10.1039/d1py01437d10.1039/d1py01437d
- 发表时间:20212021
- 期刊:
- 影响因子:4.6
- 作者:Qimin Jiang;Liang Zhao;Yongzhuang Du;Wenyan Huang;Xiaoqiang Xue;Hongjun Yang;Li Jiang;Qilin Jiang;Bibiao JiangQimin Jiang;Liang Zhao;Yongzhuang Du;Wenyan Huang;Xiaoqiang Xue;Hongjun Yang;Li Jiang;Qilin Jiang;Bibiao Jiang
- 通讯作者:Bibiao JiangBibiao Jiang
Mantle flow pattern and geodynamic cause of the North China Craton reactivation: Evidence from seismic anisotropy
华北克拉通再激活的地幔流模式及地球动力学成因:来自地震各向异性的证据
- DOI:10.1029/2010gc00306810.1029/2010gc003068
- 发表时间:2010-072010-07
- 期刊:
- 影响因子:3.5
- 作者:Liang Zhao;Mei XueLiang Zhao;Mei Xue
- 通讯作者:Mei XueMei Xue
共 864 条
- 1
- 2
- 3
- 4
- 5
- 6
- 173
Liang Zhao的其他基金
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:24033122403312
- 财政年份:2024
- 资助金额:$ 80万$ 80万
- 项目类别:Standard GrantStandard Grant
CAREER: Uncovering Solar Wind Composition, Acceleration, and Origin through Observations, Modeling, and Machine Learning Methods
职业:通过观测、建模和机器学习方法揭示太阳风的成分、加速度和起源
- 批准号:22374352237435
- 财政年份:2023
- 资助金额:$ 80万$ 80万
- 项目类别:Continuing GrantContinuing Grant
Travel: NSF Student Travel Support for the 2023 IEEE International Conference on Data Mining (IEEE ICDM 2023)
旅行:2023 年 IEEE 国际数据挖掘会议 (IEEE ICDM 2023) 的 NSF 学生旅行支持
- 批准号:23247842324784
- 财政年份:2023
- 资助金额:$ 80万$ 80万
- 项目类别:Standard GrantStandard Grant
III: Small: Graph Generative Deep Learning for Protein Structure Prediction
III:小:用于蛋白质结构预测的图生成深度学习
- 批准号:21109262110926
- 财政年份:2020
- 资助金额:$ 80万$ 80万
- 项目类别:Standard GrantStandard Grant
OAC Core: SMALL: DeepJIMU: Model-Parallelism Infrastructure for Large-scale Deep Learning by Gradient-Free Optimization
OAC 核心:小型:DeepJIMU:通过无梯度优化实现大规模深度学习的模型并行基础设施
- 批准号:20079762007976
- 财政年份:2020
- 资助金额:$ 80万$ 80万
- 项目类别:Standard GrantStandard Grant
CAREER: Spatial Network Deep Generative Modeling, Transformation, and Interpretation
职业:空间网络深度生成建模、转换和解释
- 批准号:21133502113350
- 财政年份:2020
- 资助金额:$ 80万$ 80万
- 项目类别:Continuing GrantContinuing Grant
CRII: III: Interpretable Models for Spatio-Temporal Event Forecasting using Social Sensors
CRII:III:使用社交传感器进行时空事件预测的可解释模型
- 批准号:21037452103745
- 财政年份:2020
- 资助金额:$ 80万$ 80万
- 项目类别:Standard GrantStandard Grant
CAREER: Spatial Network Deep Generative Modeling, Transformation, and Interpretation
职业:空间网络深度生成建模、转换和解释
- 批准号:19425941942594
- 财政年份:2020
- 资助金额:$ 80万$ 80万
- 项目类别:Continuing GrantContinuing Grant
OAC Core: SMALL: DeepJIMU: Model-Parallelism Infrastructure for Large-scale Deep Learning by Gradient-Free Optimization
OAC 核心:小型:DeepJIMU:通过无梯度优化实现大规模深度学习的模型并行基础设施
- 批准号:21064462106446
- 财政年份:2020
- 资助金额:$ 80万$ 80万
- 项目类别:Standard GrantStandard Grant
III: Small: Deep Generative Models for Temporal Graph Generation and Interpretation
III:小:用于时间图生成和解释的深度生成模型
- 批准号:20077162007716
- 财政年份:2020
- 资助金额:$ 80万$ 80万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
基于场景理解的全景视频智能压缩关键技术研究
- 批准号:62371310
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
典型热带生态系统大气零价汞源汇格局变化及机理解析
- 批准号:42377255
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向智能视频理解的时序结构化解析与语义细致化识别研究
- 批准号:62306239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度理解的大规模互联网虚假新闻检测研究
- 批准号:62302333
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SlCNR8调控番茄植株衰老的机理解析
- 批准号:32360766
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
CAREER: Understanding the Integrated Cyber-Physical Resilience of Continuous Critical Manufacturing
职业:了解连续关键制造的集成网络物理弹性
- 批准号:23389682338968
- 财政年份:2024
- 资助金额:$ 80万$ 80万
- 项目类别:Standard GrantStandard Grant
GOALI: Understanding the Physical Mechanisms of Distortion and Controlling its Effects in Sintering-based Additive Manufacturing Processes
目标:了解变形的物理机制并控制其在基于烧结的增材制造工艺中的影响
- 批准号:23286782328678
- 财政年份:2024
- 资助金额:$ 80万$ 80万
- 项目类别:Standard GrantStandard Grant
身体運動制御・身体運動学習の協調関係ならびに神経基盤の包括的理解とその応用
全面理解身体运动控制和身体运动学习的协作关系和神经基础及其应用
- 批准号:24K0284024K02840
- 财政年份:2024
- 资助金额:$ 80万$ 80万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
自己と他者との認知的境界はなにか:VR融合身体による他者理解の認知基盤の解明
自我与他人的认知边界是什么:阐释通过VR融合体了解他人的认知基础
- 批准号:24K2106924K21069
- 财政年份:2024
- 资助金额:$ 80万$ 80万
- 项目类别:Grant-in-Aid for Early-Career ScientistsGrant-in-Aid for Early-Career Scientists
女性乳がんサバイバーの病の体験過程における心理的成長:身体的経験の側面からの解明
女性乳腺癌幸存者疾病经历过程中的心理成长:从身体经历的角度厘清
- 批准号:24K0660724K06607
- 财政年份:2024
- 资助金额:$ 80万$ 80万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)