GOALI: Understanding the Physical Mechanisms of Distortion and Controlling its Effects in Sintering-based Additive Manufacturing Processes

目标:了解变形的物理机制并控制其在基于烧结的增材制造工艺中的影响

基本信息

  • 批准号:
    2328678
  • 负责人:
  • 金额:
    $ 65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

Additive Manufacturing (AM) involves building of 3D objects by adding layer upon layer of material. Sintering of nano/microparticles is one of the critical steps in many AM processes. This step often leads to shape distortion of AM parts, preventing their near-net-shape manufacture. This Grant Opportunities for Academic Liaison with Industry (GOALI) award supports an integrated experimental and theoretical research to fully understand the mechanisms controlling shape distortion in AM. Such understanding will enable identification of critical AM process parameters to either eliminate distortions when undesirable, or to control distortions to enable novel methods of 4D printing. The outcomes of this project have the potential to reduce cost of AM parts, positively impacting aviation, automotive, and nuclear industries. The precision manufacturing enabled by this work will help establish American leadership in Industry 4.0. As AM is adopted in aerospace industry for fabrication of large parts (e.g., aircraft wings), research outcomes from the project will be key enablers for their fabrication. Near-net-shape AM will eliminate post-processing, leading to a reduction in greenhouse gas emissions. The project will involve collaboration with K-12 students from disadvantaged schools to expose them to STEM-based careers. The project will train a diverse US workforce in the interdisciplinary areas of advanced manufacturing, computational sciences, and nanomaterials through the development of interdisciplinary curricula.This project focuses on identifying the mass transport mechanism(s) and their relative contributions to shape distortion in sintering-based AM processes. The preliminary studies have demonstrated that a long-range mass transport must be operational during part distortion in sintering. The experimental portion of the research will consist of fabrication of 3-D structures of nano and/or microparticles, operando microscopy to observe movement of particle clusters in Focused Ion Beam (FIB)-cut sections during sintering, and extensive ex-situ observations post sintering. A closely coupled modeling effort will involve the development of a mesoscale phase-field model to discover the physical mechanisms of long-range mass transport in non-homogeneous sintering. In addition, a macroscale continuum model will be developed that has capabilities to simulate full scale parts and predict shape distortion and/or residual stresses for industrially relevant configurations. A predictive model will be developed to quantify the effect of parameters such as particle size(s), binder content, constraints, and temperature gradients on part distortion. The research will establish and experimentally validate design guidelines to minimize distortion during sintering of AM parts. Lastly, inhomogeneous sintering will be introduced as a completely new technique to achieve controlled distortion, i.e., 4D printing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
增材制造 (AM) 涉及通过逐层添加材料来构建 3D 对象。 纳米/微米颗粒的烧结是许多增材制造工艺中的关键步骤之一。此步骤通常会导致增材制造零件的形状变形,从而阻碍其近净形制造。这项“学术与工业联络机会”(GOALI) 奖项支持综合实验和理论研究,以充分了解增材制造中控制形状扭曲的机制。这种理解将能够识别关键的增材制造工艺参数,以消除不需要的变形,或控制变形以实现新型 4D 打印方法。该项目的成果有可能降低增材制造零件的成本,对航空、汽车和核工业产生积极影响。这项工作实现的精密制造将有助于确立美国在工业 4.0 领域的领导地位。由于增材制造在航空航天工业中用于制造大型零件(例如飞机机翼),该项目的研究成果将成为其制造的关键推动力。近净成形增材制造将消除后处理,从而减少温室气体排放。该项目将与来自贫困学校的 K-12 学生合作,让他们接触基于 STEM 的职业。该项目将通过开发跨学科课程,在先进制造、计算科学和纳米材料等跨学科领域培训多元化的美国劳动力。该项目的重点是确定质量传输机制及其对烧结过程中形状扭曲的相对贡献。基于增材制造工艺。初步研究表明,在烧结过程中零件变形期间,必须进行长程质量传输。 该研究的实验部分将包括纳米和/或微米颗粒 3D 结构的制造、用于观察烧结过程中聚焦离子束 (FIB) 切割切片中颗粒簇运动的操作显微镜,以及广泛的异位观察。烧结。紧密耦合的建模工作将涉及介观相场模型的开发,以发现非均质烧结中远程质量传输的物理机制。此外,还将开发宏观连续体模型,该模型能够模拟全尺寸零件并预测工业相关配置的形状变形和/或残余应力。将开发一个预测模型来量化颗粒尺寸、粘合剂含量、约束条件和温度梯度等参数对零件变形的影响。该研究将建立并通过实验验证设计指南,以最大程度地减少增材制造零件烧结过程中的变形。最后,不均匀烧结将作为一种全新的技术被引入,以实现受控变形,即 4D 打印。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rahul Panat其他文献

Rahul Panat的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rahul Panat', 18)}}的其他基金

I-Corps: 3D Printed High Performance Li-ion Batteries
I-Corps:3D 打印高性能锂离子电池
  • 批准号:
    2321285
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
A Breakthrough Additive Manufacturing Method for High-Strength Lightweight 3D Micro-Architectured Materials
高强度轻质 3D 微结构材料的突破性增材制造方法
  • 批准号:
    1663511
  • 财政年份:
    2017
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Additive Manufacturing of Mechanically Strong and Electrochemically Robust Porous Electrodes for Ultra-High Energy Density Batteries
GOALI/合作研究:用于超高能量密度电池的机械强度和电化学鲁棒性多孔电极的增材制造
  • 批准号:
    1747608
  • 财政年份:
    2017
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
A Breakthrough Additive Manufacturing Method for High-Strength Lightweight 3D Micro-Architectured Materials
高强度轻质 3D 微结构材料的突破性增材制造方法
  • 批准号:
    1757117
  • 财政年份:
    2017
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Additive Manufacturing of Mechanically Strong and Electrochemically Robust Porous Electrodes for Ultra-High Energy Density Batteries
GOALI/合作研究:用于超高能量密度电池的机械强度和电化学鲁棒性多孔电极的增材制造
  • 批准号:
    1563546
  • 财政年份:
    2016
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant

相似国自然基金

基于全图表信息分析的科技文献细粒度理解
  • 批准号:
    72304215
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
典型热带生态系统大气零价汞源汇格局变化及机理解析
  • 批准号:
    42377255
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向多任务理解的复杂语义群体行为分析方法
  • 批准号:
    62306042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SlHSD2调控番茄果实角质层发育的机理解析
  • 批准号:
    32302571
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SlCNR8调控番茄植株衰老的机理解析
  • 批准号:
    32360766
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Understanding the Integrated Cyber-Physical Resilience of Continuous Critical Manufacturing
职业:了解连续关键制造的集成网络物理弹性
  • 批准号:
    2338968
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
身体運動制御・身体運動学習の協調関係ならびに神経基盤の包括的理解とその応用
全面理解身体运动控制和身体运动学习的协作关系和神经基础及其应用
  • 批准号:
    24K02840
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
自己と他者との認知的境界はなにか:VR融合身体による他者理解の認知基盤の解明
自我与他人的认知边界是什么:阐释通过VR融合体了解他人的认知基础
  • 批准号:
    24K21069
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
女性乳がんサバイバーの病の体験過程における心理的成長:身体的経験の側面からの解明
女性乳腺癌幸存者疾病经历过程中的心理成长:从身体经历的角度厘清
  • 批准号:
    24K06607
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
'Build it so they will come.' Understanding lived experience to catalyze active transportation as a climate change intervention
“建造它,这样他们就会来。”
  • 批准号:
    485336
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了