SHF: Small: Holistic Design of High-performance and Energy-efficient Accelerators for Graph Neural Networks
SHF:小型:图神经网络高性能、高能效加速器的整体设计
基本信息
- 批准号:2131946
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graph Neural Networks (GNNs) have emerged as one of the most powerful techniques for next-generation learning systems, and are gaining attention in many high-impact domains such as graph mining (graph machine, graph clustering), biology (drug discovery, disease classification), traffic networks (traffic prediction), recommendation systems (user-item prediction, social recommendation), e-commerce analysis, stock market prediction, natural language processing (text classification, neural machine translation), image processing (image classification, object detection, semantic segmentation), and autonomous systems, among many others. The explosive growth of these applications has created an enormous demand for customized accelerator design to satisfy the computational requirements of GNNs, since many of these applications require high-throughput and energy-efficient GNN inference. Conventional deep neural network (DNN) accelerators cannot efficiently process GNNs due to the combination of irregular memory accesses, dynamic parallelism imposed by the graph structure, and the dense computation in learning algorithms. This project addresses these challenges with a holistic design framework spanning architecture study, Network-on-Chip (NoC) design, machine-learning algorithms development, and algorithm-architecture co-optimization with the aim of designing energy-efficient and high-performance accelerator architectures for GNNs. The cross-cutting nature of this project will offer valuable insights and solutions to many critical problems in GNN accelerator design. The research will also play a major role in education by integrating discovery with teaching and training. The outcomes of this project will be widely disseminated to researchers, engineers, and educators through technical publications and presentations. The goal of this project is to develop GNN accelerators with much-improved performance and energy efficiency for a wide variety of graph-based machine learning applications. To achieve this goal, this project proposes: (1) the design of a morphable GNN accelerator architecture and a reconfigurable NoC to satisfy the computational demands of various GNNs, (2) the development of a GNN accelerator/algorithm co-optimization exploration framework to maximize both inference accuracy and performance (latency, area, energy, etc.) for given graph-based machine learning tasks, (3) the development of an extensive modeling and simulation framework for GNN accelerators that will be used to validate the proposed design approach, and (4) the implementation of a small-scale prototype of the proposed accelerator using Field Programmable Gate Arrays (FPGAs) and its application to real-world problems. This timely research will greatly advance the state-of-the-art of GNN acceleration, benefit both the computing and machine-learning communities, and provide strong implications on advancements in society and the US computing industry-at-large.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图神经网络 (GNN) 已成为下一代学习系统最强大的技术之一,并在许多高影响力领域受到关注,例如图挖掘(图机器、图聚类)、生物学(药物发现、疾病)分类)、流量网络(流量预测)、推荐系统(用户项目预测、社交推荐)、电子商务分析、股市预测、自然语言处理(文本分类、神经机器翻译)、图像处理(图像分类、对象检测、语义分割),和自治系统等等。这些应用的爆炸性增长产生了对定制加速器设计的巨大需求,以满足 GNN 的计算要求,因为其中许多应用需要高吞吐量和节能的 GNN 推理。由于不规则的内存访问、图结构带来的动态并行性以及学习算法中的密集计算,传统的深度神经网络(DNN)加速器无法有效地处理 GNN。该项目通过涵盖架构研究、片上网络 (NoC) 设计、机器学习算法开发和算法架构协同优化的整体设计框架来应对这些挑战,旨在设计节能和高性能加速器GNN 的架构。该项目的跨领域性质将为 GNN 加速器设计中的许多关键问题提供有价值的见解和解决方案。该研究还将发现与教学和培训相结合,在教育中发挥重要作用。该项目的成果将通过技术出版物和演示文稿广泛传播给研究人员、工程师和教育工作者。该项目的目标是为各种基于图的机器学习应用开发性能和能效显着提高的 GNN 加速器。为了实现这一目标,该项目提出:(1)设计可变形的GNN加速器架构和可重构的片上网络(NoC),以满足各种GNN的计算需求,(2)开发GNN加速器/算法协同优化探索框架,以满足各种GNN的计算需求。最大限度地提高给定的基于图的机器学习任务的推理准确性和性能(延迟、面积、能量等),(3) 为 GNN 加速器开发广泛的建模和模拟框架,该框架将用于验证所提出的设计方法,以及(4)使用现场可编程门阵列(FPGA)实现所提出的加速器的小规模原型及其在实际问题中的应用。这项及时的研究将极大地推进 GNN 加速的最先进水平,使计算和机器学习社区受益,并对社会和整个美国计算行业的进步产生重大影响。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adapt-Flow: A Flexible DNN Accelerator Architecture for Heterogeneous Dataflow Implementation
Adapt-Flow:用于异构数据流实现的灵活 DNN 加速器架构
- DOI:10.1145/3526241.3530311
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yang, Jiaqi;Zheng, Hao;Louri, Ahmed
- 通讯作者:Louri, Ahmed
AGAPE: Anomaly Detection with Generative Adversarial Network for Improved Performance, Energy, and Security in Manycore Systems
- DOI:10.23919/date54114.2022.9774693
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Ke Wang;Hao Zheng;Yuan Li;Jiajun Li;A. Louri
- 通讯作者:Ke Wang;Hao Zheng;Yuan Li;Jiajun Li;A. Louri
FSA: An Efficient Fault-tolerant Systolic Array-based DNN Accelerator Architecture
- DOI:10.1109/iccd56317.2022.00086
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Yingnan Zhao;Ke Wang;A. Louri
- 通讯作者:Yingnan Zhao;Ke Wang;A. Louri
GShuttle: Optimizing Memory Access Efficiency for Graph Convolutional Neural Network Accelerators
- DOI:10.1007/s11390-023-2875-9
- 发表时间:2023-01
- 期刊:
- 影响因子:0.7
- 作者:Jiajun Li;Ke Wang;Hao Zheng;A. Louri
- 通讯作者:Jiajun Li;Ke Wang;Hao Zheng;A. Louri
Nanoscale Accelerators for Artificial Neural Networks
- DOI:10.1109/mnano.2022.3208757
- 发表时间:2022-12
- 期刊:
- 影响因子:1.6
- 作者:Farzad Niknia;Ziheng Wang;Shanshan Liu;Ahmed Louri;Fabrizio Lombardi
- 通讯作者:Farzad Niknia;Ziheng Wang;Shanshan Liu;Ahmed Louri;Fabrizio Lombardi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmed Louri其他文献
Ahmed Louri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmed Louri', 18)}}的其他基金
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
- 批准号:
2321224 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type II: Multi-Function Cross-Layer Electro-Optic Fabrics for Reliable and Sustainable Computing Systems
合作研究:DESC:II 型:用于可靠和可持续计算系统的多功能跨层电光织物
- 批准号:
2324644 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
- 批准号:
2311543 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Neural-Network-based Stochastic Computing Architectures with applications to Machine Learning
合作研究:SHF:中:基于神经网络的随机计算架构及其在机器学习中的应用
- 批准号:
1953980 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Photonic Neural Network Accelerators for Energy-efficient Heterogeneous Multicore Architectures
SHF:媒介:协作研究:用于节能异构多核架构的光子神经网络加速器
- 批准号:
1901165 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Integrated Framework for System-Level Approximate Computing
SHF:小型:协作研究:系统级近似计算的集成框架
- 批准号:
1812495 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures Optimized for Energy, Performance and Reliability
SHF:中:协作研究:支持机器学习的片上网络架构,针对能源、性能和可靠性进行了优化
- 批准号:
1702980 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
- 批准号:
1547034 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
- 批准号:
1547035 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
XPS: FULL: CCA: Collaborative Research: SPARTA: a Stream-based Processor And Run-Time Architecture
XPS:完整:CCA:协作研究:SPARTA:基于流的处理器和运行时架构
- 批准号:
1547036 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
- 批准号:82372561
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
- 批准号:82373082
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于胆碱能皮层投射纤维探讨脑小血管病在帕金森病步态障碍中的作用及机制研究
- 批准号:82301663
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
关于丢番图方程小素数解上界估计的研究
- 批准号:12301005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
嗅球小胶质细胞P2X7受体在变应性鼻炎发生帕金森病样改变中的作用与机制研究
- 批准号:82371119
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
SHF: Small: Towards a Holistic Causal Model for Continuous Software Traceability
SHF:小型:迈向连续软件可追溯性的整体因果模型
- 批准号:
2007246 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF:Small: Holistic Analysis: integrating the semantics of the world and the code
SHF:Small:整体分析:整合世界语义和代码
- 批准号:
1853374 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF:Small: Holistic Analysis: integrating the semantics of the world and the code
SHF:Small:整体分析:整合世界语义和代码
- 批准号:
1718040 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
- 批准号:
1547035 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
- 批准号:
1420718 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant