SHF: Medium: Collaborative Research: Photonic Neural Network Accelerators for Energy-efficient Heterogeneous Multicore Architectures
SHF:媒介:协作研究:用于节能异构多核架构的光子神经网络加速器
基本信息
- 批准号:1901165
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep learning architectures such as convolutional neural networks and recurrent neural networks have achieved unprecedented, sometimes super-human accuracy on many modern applications in artificial intelligence, such as image classification and speech recognition. Power dissipation is however a major concern in these energy-hungry machine-learning architectures, and decreasing it requires designs that provide a more energy-efficient combination of hardware and machine-learning algorithms. There is an increased emphasis to leverage parallelism and specialization to improve performance and energy efficiency. To dramatically reduce power consumption, silicon photonics has been proposed to improve performance-per-Watt compared to electrical implementation.This project leverages photonic technology and heterogeneous multicores for the design of deep-neural network accelerators that improve parallelism, concurrency, energy efficiency and scalability in various machine-learning applications. The first task of the project is concerned with the characterization and identification of photonic devices that can implement accelerator functionalities such as multiply-and-accumulate, summation, and other arithmetic operations. The characterized devices are then inserted into single-layer and multi-layer photonic topologies for implementing accelerator functionality. The second task of the project implements various types of deep-learning architectures on the proposed photonic neural network accelerator to maximize the gains offered by the photonic technology. The third task of the project builds an extensive simulation and modeling infrastructure that combines the photonic technology, network architectures, accelerator functionality, and machine-learning algorithms developed in the previous two steps, in order to validate the significant reduction in energy consumption enabled by the photonic neural-network accelerator.The proposed research bridges a very important gap between photonic technology, hardware architecture, and machine learning. As such, and due to its cross-cutting nature, it is expected to have far-reaching impacts on the design of next-generation multicore architectures. It will foster new research directions in several areas, spanning computer architecture, optical technology, machine learning algorithms and applications. The research will also play a major role in education by integrating discovery with teaching and training. All the research findings and simulation toolkits will be disseminated to the community via conference and journal publications, and a dedicated website.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习体系结构,例如卷积神经网络和经常性神经网络,在许多现代化的人工智能中(例如图像分类和语音识别)上实现了前所未有的,有时超级人类的精度。然而,在这些渴望能源的机器学习体系结构中,功率耗散是一个主要问题,并且需要减少其设计,以提供更节能的硬件和机器学习算法的组合。越来越强调利用并行性和专业化来提高性能和能源效率。为了大大降低功耗,已经提出了硅光子学来提高每瓦的性能,而与电气实施相比,该项目利用光子技术和异质多孔来设计深水网络加速器,以改善各种机器学习应用中的并行性,一致性,能源效率和可伸缩性。该项目的第一个任务与可以实现加速器功能的光子设备的表征和识别有关,例如多重和蓄积,总和和其他算术操作。然后将表征的设备插入用于实现加速器功能的单层和多层光子拓扑中。该项目的第二个任务在拟议的光子神经网络加速器上实现了各种类型的深度学习架构,以最大程度地提高光子技术所提供的收益。该项目的第三个任务构建了广泛的模拟和建模基础架构,该基础架构结合了前两个步骤中开发的光子技术,网络体系结构,加速器功能和机器学习算法,以确认由Photonic Neur-NET-Net Workhator启用的能源消耗大量降低。因此,由于其横切性质,预计它将对下一代多层体系结构的设计产生深远的影响。它将在多个领域促进新的研究方向,涵盖计算机架构,光学技术,机器学习算法和应用程序。这项研究还将通过将发现与教学和培训相结合,在教育中发挥重要作用。所有研究发现和模拟工具包将通过会议和期刊出版物以及专门的网站将其传播到社区。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估标准来通过评估来支持的。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Approximate Communication Framework for Network-on-Chips
- DOI:10.1109/tpds.2020.2968068
- 发表时间:2020-06
- 期刊:
- 影响因子:5.3
- 作者:Yuechen Chen;A. Louri
- 通讯作者:Yuechen Chen;A. Louri
SPACX: Silicon Photonics-based Scalable Chiplet Accelerator for DNN Inference
- DOI:10.1109/hpca53966.2022.00066
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Yuan Li;A. Louri;Avinash Karanth
- 通讯作者:Yuan Li;A. Louri;Avinash Karanth
PIXEL: Photonic Neural Network Accelerator
- DOI:10.1109/hpca47549.2020.00046
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Kyle Shiflett;Dylan Wright;Avinash Karanth;A. Louri
- 通讯作者:Kyle Shiflett;Dylan Wright;Avinash Karanth;A. Louri
SPRINT: A High-Performance, Energy-Efficient, and Scalable Chiplet-based Accelerator with Photonic Interconnects for CNN Inference
- DOI:10.1109/tpds.2021.3139015
- 发表时间:2021
- 期刊:
- 影响因子:5.3
- 作者:Yuan Li;A. Louri;Avinash Karanth
- 通讯作者:Yuan Li;A. Louri;Avinash Karanth
Venus: A Versatile Deep Neural Network Accelerator Architecture Design for Multiple Applications
- DOI:10.1109/dac56929.2023.10247897
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Jiaqi Yang;Yang;Jiaqi;Cute
- 通讯作者:Jiaqi Yang;Yang;Jiaqi;Cute
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmed Louri其他文献
Ahmed Louri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmed Louri', 18)}}的其他基金
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
- 批准号:
2321224 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type II: Multi-Function Cross-Layer Electro-Optic Fabrics for Reliable and Sustainable Computing Systems
合作研究:DESC:II 型:用于可靠和可持续计算系统的多功能跨层电光织物
- 批准号:
2324644 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
- 批准号:
2311543 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
SHF: Small: Holistic Design of High-performance and Energy-efficient Accelerators for Graph Neural Networks
SHF:小型:图神经网络高性能、高能效加速器的整体设计
- 批准号:
2131946 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Neural-Network-based Stochastic Computing Architectures with applications to Machine Learning
合作研究:SHF:中:基于神经网络的随机计算架构及其在机器学习中的应用
- 批准号:
1953980 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Integrated Framework for System-Level Approximate Computing
SHF:小型:协作研究:系统级近似计算的集成框架
- 批准号:
1812495 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures Optimized for Energy, Performance and Reliability
SHF:中:协作研究:支持机器学习的片上网络架构,针对能源、性能和可靠性进行了优化
- 批准号:
1702980 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
- 批准号:
1547034 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
- 批准号:
1547035 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
XPS: FULL: CCA: Collaborative Research: SPARTA: a Stream-based Processor And Run-Time Architecture
XPS:完整:CCA:协作研究:SPARTA:基于流的处理器和运行时架构
- 批准号:
1547036 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
- 批准号:72374217
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant