SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures

SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络

基本信息

  • 批准号:
    1547034
  • 负责人:
  • 金额:
    $ 30.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-05-15 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

As power dissipation on a single-chip is increasing at an alarming rate due to massive integration of digital circuits, multicore design has become the only technique to scale performance. Multicores with tens to hundreds of cores are already available in the marketplace and future projections call for thousands of cores on the chip. To achieve scalable computing performance from the multicores, the communication between cores should also scale in bandwidth while significantly reducing the power consumption. Scaling the performance of the on-chip communication fabric, called the Network-on-Chip (NoC), has proven to be a significant challenge with traditional metallic interconnects due to fundamental signaling issues such as power dissipation, electromagnetic interference, crosstalk and reflections. Several studies and roadmaps have indicated that disruptive technology solutions such as photonics have the potential to alleviate the critical bandwidth, power and latency challenges of future multicores. This research seeks to exploit the unique advantages of photonic interconnects and 3D stacking technologies to develop scalable, energy-efficient, bandwidth-reconfigurable and reliable NoCs for future multicores. There are three goals of the proposed research; first, it will investigate and develop 3D stacked photonic NoC architectures and topologies that maximize performance and improve energy-efficiency. Second, it will develop runtime reconfiguration techniques that can adapt the network to the communication needs of the application, thereby improving performance on a per-application basis. Third, it will result in an extensive modeling and simulation framework to be used for designing and validating future photonic NoC architectures.This research has far reaching broader impacts. This research is uniquely positioned to leverage two emerging technologies namely photonics and 3D stacking to meet the multicore challenge and will significantly benefit society. The proposed research is essential to continue the growth of computing performance that our society depends upon, and will result in digital devices ranging from smartphones to laptops with faster response time and improved reliability. By investigating the design of energy-efficient and high-bandwidth photonic-3D NoC architectures, this proposal describes a transformative and viable approach to combine technology, algorithm and applications? research to enable building scalable multicores. The cross-cutting nature of this research will foster new research directions in several areas, spanning technology/energy-aware NoC design, novel computer architectures, and cutting-edge modeling and simulations tools for emerging technologies. This research will also play a major role in education by integrating discovery with teaching and training. Several graduate students will be directly involved with all phases of the project from which the core parts of their dissertations and theses will be derived. It will also benefit a wider audience of graduate and undergraduate students by incorporating the new research into several courses on computer architecture and parallel processing taught by the PIs. Finally, the results and findings of the proposed research will be disseminated to researchers, engineers and educators through technical publications and presentations.
由于数字电路的大规模整合,单芯片上的功率耗散以惊人的速度增加,因此多核设计已成为扩展性能的唯一技术。市场上已经有数十个至数百枚核心的多门,未来的预测要求数千个芯片上有数千个核心。为了实现Multicores的可扩展计算性能,核心之间的通信也应在带宽方面扩展,同时大大降低功耗。由于基本的信号问题,例如功率耗散,电磁干扰,串扰和反射,因此,在传统的金属互连方面扩展了称为网络芯片(NOC)(NOC)的片上的性能,这是一个重大挑战。几项研究和路线图表明,诸如光子学之类的破坏性技术解决方案有可能减轻未来多学院的关键带宽,功率和潜伏期挑战。这项研究旨在利用光子互连和3D堆叠技术的独特优势,以开发可扩展,能效,带宽 - 可靠性和可靠的NOC,以用于将来的多学院。拟议的研究有三个目标;首先,它将调查并开发3D堆叠的光子NOC架构和拓扑结构,以最大程度地提高性能并提高能源效率。其次,它将开发运行时重新配置技术,可以使网络适应应用程序的通信需求,从而以每个应用程序提高性能。第三,这将导致广泛的建模和仿真框架用于设计和验证未来的光子NOC体系结构。这项研究具有更大的影响。这项研究的独特位置可以利用两种新兴技术,即光子学和3D堆叠来应对多项挑战,并将极大地使社会受益。拟议的研究对于继续我们社会所依赖的计算性能的增长至关重要,并将导致数字设备从智能手机到具有更快响应时间和可靠性提高的笔记本电脑的数字设备。通过调查节能和高带宽光子3D NOC体系结构的设计,该提案描述了一种结合技术,算法和应用的变革性且可行的方法?研究以启用建筑可扩展的多头大盘。这项研究的横切性质将在几个领域促进新的研究方向,涵盖技术/能源感知的NOC设计,新颖的计算机架构以及新兴技术的尖端建模和模拟工具。这项研究还将通过将发现与教学和培训相结合,在教育中发挥重要作用。几位研究生将直接参与该项目的所有阶段,其论文和论文的核心部分将得出。通过将新的研究纳入有关计算机架构和PIS教授的平行处理的几门课程中,这也将使更多的研究生和本科生受益。最后,拟议研究的结果和发现将通过技术出版物和演示文稿传播给研究人员,工程师和教育者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ahmed Louri其他文献

Ahmed Louri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ahmed Louri', 18)}}的其他基金

Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
  • 批准号:
    2321224
  • 财政年份:
    2023
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type II: Multi-Function Cross-Layer Electro-Optic Fabrics for Reliable and Sustainable Computing Systems
合作研究:DESC:II 型:用于可靠和可持续计算系统的多功能跨层电光织物
  • 批准号:
    2324644
  • 财政年份:
    2023
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
  • 批准号:
    2311543
  • 财政年份:
    2023
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Continuing Grant
SHF: Small: Holistic Design of High-performance and Energy-efficient Accelerators for Graph Neural Networks
SHF:小型:图神经网络高性能、高能效加速器的整体设计
  • 批准号:
    2131946
  • 财政年份:
    2021
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Neural-Network-based Stochastic Computing Architectures with applications to Machine Learning
合作研究:SHF:中:基于神经网络的随机计算架构及其在机器学习中的应用
  • 批准号:
    1953980
  • 财政年份:
    2020
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Photonic Neural Network Accelerators for Energy-efficient Heterogeneous Multicore Architectures
SHF:媒介:协作研究:用于节能异构多核架构的光子神经网络加速器
  • 批准号:
    1901165
  • 财政年份:
    2019
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Continuing Grant
SHF: Small: Collaborative Research: Integrated Framework for System-Level Approximate Computing
SHF:小型:协作研究:系统级近似计算的集成框架
  • 批准号:
    1812495
  • 财政年份:
    2018
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures Optimized for Energy, Performance and Reliability
SHF:中:协作研究:支持机器学习的片上网络架构,针对能源、性能和可靠性进行了优化
  • 批准号:
    1702980
  • 财政年份:
    2017
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Continuing Grant
SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
  • 批准号:
    1547035
  • 财政年份:
    2015
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Standard Grant
XPS: FULL: CCA: Collaborative Research: SPARTA: a Stream-based Processor And Run-Time Architecture
XPS:完整:CCA:协作研究:SPARTA:基于流的处理器和运行时架构
  • 批准号:
    1547036
  • 财政年份:
    2015
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Standard Grant

相似国自然基金

基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
  • 批准号:
    61661005
  • 批准年份:
    2016
  • 资助金额:
    30.0 万元
  • 项目类别:
    地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
  • 批准号:
    61301143
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
  • 批准号:
    81072465
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
基于小世界网络的传感器网络研究
  • 批准号:
    60472059
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
  • 批准号:
    2334624
  • 财政年份:
    2023
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了