Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
基本信息
- 批准号:2311543
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The on-chip communication fabric connecting the cores, accelerators and the memory in chiplet-based architectures consumes a significant amount of power today and must be designed to not only provide adequate connectivity and performance, but also be very energy efficient and scalable, to satisfy future computing demands. Silicon photonics has the potential to alleviate some of the on-chip communication problems thanks to better performance-per-watt and higher bandwidth density. A key issue in addressing this design challenge today is the under-utilization of the expensive silicon photonics technology due to temporal and spatial fluctuation of traffic patterns. To make silicon photonics practical and viable, re-purposing the under-utilized resources for computation can speed up application execution and provide much-needed energy-efficient data transfers. The proposed research is timely and vital for the continued growth of chiplet-based heterogeneous manycore architectures. It is an organized effort that combines recent advances in technology, architecture, application, and machine learning into a promising integrated approach that will tackle one of the most critical challenges of computing systems of the future, namely the design of next-generation communication fabrics for high-performance, energy-efficient and scalable heterogeneous architectures with much-increased functionality and flexibility. All the research findings and simulation toolkits will be disseminated to the community via conference and journal publications, and a dedicated website. The research will also play a major role in education by integrating discovery with teaching and training. This research will continue to expand on outreach activities and broadening participation in computing by making the necessary efforts to attract and train underrepresented and minority students in this field. This research will design a novel, dual-purpose photonic fabric that will not only enable power-efficient and scalable on-chip communications for heterogeneous multicores but will also function as a cost-efficient and high-performance neural network accelerator for diverse applications. The crux of the idea is to: (1) provide high-bandwidth and power-efficient data transfer between cores and accelerators during high network load, and (2) off-load key accelerator functions to the same network during low network load to maximize resource utilization and speedup computation, hence the dual-purpose nature of the photonic fabric. It is expected that the combined effects of meticulously orchestrating data communication (on-chip and off-chip), sharing hardware resources between communication and computation, and implementing optical neural computations will provide an extremely power-efficient and scalable platform for next-generation heterogeneous chiplet-based architectures. This research will result in (1) novel photonic architectures that can be leveraged for computing and communication simultaneously, (2) a fundamental understanding of photonic computation for implementing accelerator functions, (3) hardware techniques for photonic architectures to dynamically adapt to application demands to maximize the power-efficiency and improve resiliency, and (4) proof-of-concept and open-source tools that will expand and enhance the research capabilities of the computer architecture community in this critical area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
连接核心,加速器和基于芯片的体系结构中的内存的片上通信结构,如今消耗了大量的功率,必须设计不仅可以提供足够的连接性和性能,而且还具有非常节能且可扩展的,以满足未来的计算需求。硅光子学有可能减轻一些芯片沟通问题,这要归功于每瓦的性能和更高的带宽密度。应对当今设计挑战的一个关键问题是由于交通模式的时间和空间波动而导致昂贵的硅光子技术的利用不足。为了使硅光子学实用且可行,重新定位未充分利用的计算资源可以加快应用程序执行并提供急需的节能数据传输。拟议的研究对于基于chiplet的异质多核体系结构的持续增长至关重要。这是一种有组织的工作,将技术,建筑,应用和机器学习的最新进展结合到了有前途的集成方法中,该方法将解决未来计算系统最关键的挑战之一,即下一代通信面料的设计,用于高性能,能效,可延展性和可扩展的异构体系结构的功能和灵活性和灵活性。所有研究发现和仿真工具包将通过会议和期刊出版物以及专门的网站传播到社区。这项研究还将通过将发现与教学和培训相结合,在教育中发挥重要作用。这项研究将继续扩大外展活动并通过在该领域吸引和培训代表性不足和少数族裔学生的必要努力来扩大计算机的参与。这项研究将设计一种新型的双重光子光子织物,不仅可以为异构多头堆积提供功率效率且可扩展的片上通信,而且还可以作为一种具有成本效益且高性能的神经网络加速器来用于多样化的应用。该想法的症结在于:(1)在高网络负载期间提供高带宽和功率效率的数据传输,以及(2)在低网络负载期间,(2)卸载密钥加速器功能到同一网络,以最大程度地提高资源利用率和加速度计算,从而最大程度地提高光子织物的双重性质性质。可以预期,精心策划数据通信(芯片和片芯片),在通信和计算之间共享硬件资源以及实施光学神经计算的综合效果将为下一代基于异构芯片架构提供一个极其强大效率且可扩展的平台。这项研究将导致(1)可以利用计算和交流的新型光子体系结构,(2)对实施加速器功能的光子计算的基本了解,(3)光子体系结构的硬件技术,以动态地适应应用程序的需求,以提高效率和稳定性,并提高稳定性和(4)开放性,以及(4)启用稳定性,并(4)启用了(4)启用性工具,以及(4)4)该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响评论标准来评估的,这是值得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmed Louri其他文献
Ahmed Louri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmed Louri', 18)}}的其他基金
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
- 批准号:
2321224 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type II: Multi-Function Cross-Layer Electro-Optic Fabrics for Reliable and Sustainable Computing Systems
合作研究:DESC:II 型:用于可靠和可持续计算系统的多功能跨层电光织物
- 批准号:
2324644 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Small: Holistic Design of High-performance and Energy-efficient Accelerators for Graph Neural Networks
SHF:小型:图神经网络高性能、高能效加速器的整体设计
- 批准号:
2131946 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Neural-Network-based Stochastic Computing Architectures with applications to Machine Learning
合作研究:SHF:中:基于神经网络的随机计算架构及其在机器学习中的应用
- 批准号:
1953980 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Photonic Neural Network Accelerators for Energy-efficient Heterogeneous Multicore Architectures
SHF:媒介:协作研究:用于节能异构多核架构的光子神经网络加速器
- 批准号:
1901165 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Integrated Framework for System-Level Approximate Computing
SHF:小型:协作研究:系统级近似计算的集成框架
- 批准号:
1812495 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures Optimized for Energy, Performance and Reliability
SHF:中:协作研究:支持机器学习的片上网络架构,针对能源、性能和可靠性进行了优化
- 批准号:
1702980 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
- 批准号:
1547034 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
- 批准号:
1547035 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
XPS: FULL: CCA: Collaborative Research: SPARTA: a Stream-based Processor And Run-Time Architecture
XPS:完整:CCA:协作研究:SPARTA:基于流的处理器和运行时架构
- 批准号:
1547036 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant