SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
基本信息
- 批准号:1420718
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technology scaling down to the nanometer regime has aided the growth in transistors that have made multi-core architectures a power-efficient approach to harnessing parallelism and improving performance. Consequently, the design of low latency, high bandwidth, power-efficient and reliable Network-on-Chips (NoCs) is proving to be one of the most critical challenges to achieving the performance potential of future chips. While multicores are facilitating an enormous integration capacity, aggressive transistor scaling has also led to a steady degradation of the device and circuit reliability. Increased device wear-out (due to negative-bias temperature instability (NBTI), electro migration (EM) and hot carrier injection (HCI)) has exacerbated the waning reliability of transistors, thereby resulting in a significant increase in faults (both permanent and transient), and hardware failures. As faults manifest within the NoC substrate, multicore chips are faced with excessive delays and increased power consumption while recovering from the fault. While NoC reliability research has made significant strides at inter- and intra-router levels, there is still a lack of a holistic design approach covering the reliability of the entire NoC architecture, from device wear-out, to links and routers, to routing protocols, to applications in a cohesive manner.This project will develop a holistic design methodology that addresses the reliability of the entire NoC communication infrastructure (device, links, routers, routing algorithms, and topology) while minimizing energy footprint, reducing the area overhead and only marginally impacting performance. To achieve our goal of improving link fault-recovery, this project will develop techniques to maximize the utilization of the inter-router links with minimum power and area overhead. For the router, this project will propose intra-router reliability techniques with the goals of maximizing hardware utilization, reducing redundancy and area overhead, and minimizing router pipeline latency. Further, wear-leveling techniques developed by this project will improve the reliability of NoCs and the lifetime of the chip. Finally, the proposed techniques will be evaluated by developing fault models that are injected into the NoC and evaluate the fault coverage, performance degradation and energy efficiency through extensive modeling and simulation. The holistic design methodology spanning the entire NoC architecture and the reliability techniques developed from this project will positively impact the next generation multi-core and System-on-Chip (SoC) architectures with improvements in energy efficiency, performance and robustness to hard faults and soft errors. This project will play a major role in education by integrating discovery with teaching and training, and by attracting and training minority students in this field.
缩小到纳米范围的技术促进了晶体管的发展,使多核架构成为一种利用并行性和提高性能的节能方法。因此,低延迟、高带宽、节能且可靠的片上网络 (NoC) 的设计被证明是实现未来芯片性能潜力的最关键挑战之一。虽然多核正在促进巨大的集成能力,但激进的晶体管尺寸也导致了器件和电路可靠性的稳步下降。器件磨损增加(由于负偏压温度不稳定性 (NBTI)、电迁移 (EM) 和热载流子注入 (HCI))加剧了晶体管可靠性的下降,从而导致故障(永久性和永久性故障)显着增加。瞬态)和硬件故障。由于NoC基板内出现故障,多核芯片在从故障中恢复时面临着过度延迟和功耗增加的问题。虽然NoC可靠性研究在路由器间和路由器内层面取得了重大进展,但仍然缺乏涵盖整个NoC架构可靠性的整体设计方法,从设备磨损到链路和路由器,再到路由协议该项目将开发一种整体设计方法,解决整个 NoC 通信基础设施(设备、链路、路由器、路由算法和拓扑)的可靠性问题,同时最大限度地减少能源足迹、减少面积开销,并且仅对性能产生轻微影响。为了实现改进链路故障恢复的目标,该项目将开发以最小的功率和面积开销最大限度地利用路由器间链路的技术。对于路由器,该项目将提出路由器内可靠性技术,其目标是最大化硬件利用率、减少冗余和区域开销以及最小化路由器管道延迟。此外,该项目开发的磨损均衡技术将提高NoC的可靠性和芯片的使用寿命。最后,将通过开发注入 NoC 的故障模型来评估所提出的技术,并通过广泛的建模和仿真来评估故障覆盖范围、性能退化和能源效率。涵盖整个 NoC 架构的整体设计方法以及该项目开发的可靠性技术将对下一代多核和片上系统 (SoC) 架构产生积极影响,提高能效、性能以及对硬故障和软故障的鲁棒性。错误。该项目将通过将发现与教学和培训相结合,并吸引和培训该领域的少数民族学生,在教育领域发挥重要作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avinash Karanth其他文献
Ultracompact and Low-Power Logic Circuits via Workfunction Engineering
通过功函数工程实现超紧凑和低功耗逻辑电路
- DOI:
10.1109/jxcdc.2019.2962494 - 发表时间:
2019 - 期刊:
- 影响因子:2.4
- 作者:
T. F. Canan;S. Kaya;Avinash Karanth;A. Louri - 通讯作者:
A. Louri
Reconfigurable Gates with Sub-10nm Ambipolar SB-FinFETs for Logic Locking & Obfuscation
具有亚 10nm 双极 SB-FinFET 的可重构栅极,用于逻辑锁定
- DOI:
10.1109/mwscas48704.2020.9184509 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
T. F. Canan;S. Kaya;H. Chenji;Avinash Karanth - 通讯作者:
Avinash Karanth
d-GUARD: Thwarting Denial-of-Service Attacks via Hardware Monitoring of Information Flow using Language Semantics in Embedded Systems
d-GUARD:通过在嵌入式系统中使用语言语义对信息流进行硬件监控来阻止拒绝服务攻击
- DOI:
10.1109/asp-dac58780.2024.10473945 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Garett Cunningham;Harsha Chenji;David Juedes;Avinash Karanth - 通讯作者:
Avinash Karanth
Sustainability in Network-on-Chips by Exploring Heterogeneity in Emerging Technologies
通过探索新兴技术的异构性实现片上网络的可持续性
- DOI:
10.1109/tsusc.2018.2861362 - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Avinash Karanth;S. Kaya;A. Sikder;Daniel J. Carbaugh;S. Laha;D. DiTomaso;A. Louri;H. Xin;Junqiang Wu - 通讯作者:
Junqiang Wu
Reflections of Cybersecurity Workshop for K-12 Teachers
K-12 教师网络安全研讨会的思考
- DOI:
10.1145/3545945.3569761 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Chad Mourning;H. Chenji;Allyson Hallman;S. Kaya;Nasseef Abukamail;D. Juedes;Avinash Karanth - 通讯作者:
Avinash Karanth
Avinash Karanth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Avinash Karanth', 18)}}的其他基金
Collaborative Research: DESC: Type II: Multi-Function Cross-Layer Electro-Optic Fabrics for Reliable and Sustainable Computing Systems
合作研究:DESC:II 型:用于可靠和可持续计算系统的多功能跨层电光织物
- 批准号:
2324645 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
- 批准号:
2311544 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Language Abstractions for Reconfigurable Hardware Monitors on Manycore Architectures
SaTC:CORE:Small:众核架构上可重新配置硬件监视器的语言抽象
- 批准号:
1936794 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Photonic Neural Network Accelerator for Energy-efficient Heterogeneous Multicore Architectures
SHF:中:协作研究:用于节能异构多核架构的光子神经网络加速器
- 批准号:
1901192 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures for Optimized Energy, Performance and Reliability
SHF:中:协作研究:支持机器学习的片上网络架构,可优化能源、性能和可靠性
- 批准号:
1703013 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Scaling On-chip Networks to 1000-core Systems using Heterogeneous Emerging Interconnect Technologies
SHF:中:协作研究:使用异构新兴互连技术将片上网络扩展到 1000 核系统
- 批准号:
1513606 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
- 批准号:
1318981 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research:EAGER:Exploiting Heterogeneity in Emerging Interconnect Technologies for Building Highly Scalable and Power-Efficient Network-on-Chips for Many-core Systems
合作研究:EAGER:利用新兴互连技术的异构性为多核系统构建高度可扩展且高能效的片上网络
- 批准号:
1342657 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Power-Efficient Reconfigurable Wireless Network-on-Chip (NoC) Interconnects for Future Many-core Architectures
适用于未来众核架构的高能效可重配置无线片上网络 (NoC) 互连
- 批准号:
1129010 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Design of Reconfigurable Power and Area-Efficient Nanophotonic Architectures for Future Multi-cores
职业:为未来多核设计可重构功率和面积高效的纳米光子架构
- 批准号:
1054339 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
- 批准号:82372561
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
- 批准号:82373082
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于胆碱能皮层投射纤维探讨脑小血管病在帕金森病步态障碍中的作用及机制研究
- 批准号:82301663
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
关于丢番图方程小素数解上界估计的研究
- 批准号:12301005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
嗅球小胶质细胞P2X7受体在变应性鼻炎发生帕金森病样改变中的作用与机制研究
- 批准号:82371119
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Technical Debt Management in Dynamic and Distributed Systems
合作研究:SHF:小型:动态和分布式系统中的技术债务管理
- 批准号:
2232720 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant