SHF: Medium: Collaborative Research: Scaling On-chip Networks to 1000-core Systems using Heterogeneous Emerging Interconnect Technologies

SHF:中:协作研究:使用异构新兴互连技术将片上网络扩展到 1000 核系统

基本信息

  • 批准号:
    1513606
  • 负责人:
  • 金额:
    $ 48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Power dissipation has become a fundamental barrier to scaling computing performance across all platforms from handheld, embedded systems, to laptops, to servers to data centers. Technology scaling down to the sub-nanometer regime has aided the growth in transistors per chip that has made multi-core architectures a power-efficient approach to harnessing parallelism and improving performance. The computing capabilities of these multi-core architectures can be unleashed only if the underlying Network-on-Chip (NoC) connecting the cores can provide the required bandwidth within the power budget of the chip. However, the design of power-efficient, low-latency and high-bandwidth NoCs using traditional metallic interconnects that can scale to 1000 cores and beyond, is proving to be a significant challenge of enormous proportions. Research has shown that emerging technologies such as photonics and wireless have the potential to alleviate the critical bandwidth, power, and latency challenges of future NoCs. However, hybrid NoC designs taking advantages of both photonics and wireless technologies have not been explored. This research proposes to lay the groundwork for completely re-thinking the NoC design and proposes to explore heterogeneity of emerging interconnect technology for designing performance scalable, and power-efficient NoCs. The overall objective is to combine multiple technologies to achieve our challenging goals of (1) scalability to 1000 cores, (2) power efficiency of at least a 50% power reduction as compared to the state-of-the-art metallic interconnects, and (3) high bandwidth and low latency across a wide variety of applications. First, at the architecture level, optics will be deployed for short-range ( 100 cores) to improve local communication and wireless for long-range communication in order to scale the number of cores to 1000 by providing sufficient global bandwidth. Second, at the circuit level, hybrid transceiver architectures will be explored to integrate novel ultra-low power wireless circuits based on SiGe/BiCMOS technology with optical waveguides and ring-resonators to provide the large bandwidth desired for kilo-core designs. Furthermore, wireless communication requirements will be addressed by designing mm-wave/THz frequency broadband and directional antennas based on advanced 3D printing technology. This proposal describes a transformative and viable approach combining technology, architecture, algorithms and applications research for designing scalable and energy-efficient NoCs. The cross-cutting nature of this research will foster new research directions in several areas, spanning technology/energy-aware NoC design, novel computer architectures, and cutting-edge modeling and simulations tools for emerging technologies.
功率耗散已成为从手持式,嵌入式系统到笔记本电脑到服务器到数据中心的所有平台扩展计算性能的基本障碍。扩展到子纳米级制度的技术有助于每个芯片的晶体管增长,这使多核体系结构成为利用并行性和提高性能的力量方法。仅当连接核心的基础网络(NOC)可以在芯片的功率预算内提供所需的带宽时,才能释放这些多核体系结构的计算功能。但是,使用传统的金属互连可以扩展到1000个核心及以后的传统金属互连的功率,低延迟和高带宽NOC的设计,这是对巨大比例的重大挑战。研究表明,诸如Photonics和Wireless之类的新兴技术有可能减轻未来NOC的关键带宽,功率和潜伏期挑战。但是,尚未探索具有光子学和无线技术优势的混合NOC设计。这项研究提出了为完全重新考虑NOC设计的基础,并提议探索新兴互连技术的异质性,以设计可扩展性能的性能和发电效率的NOC。总体目的是将多种技术结合起来,以实现(1)可伸缩到1000个内核的挑战性目标,(2)与最先进的金属互连相比,功率效率至少降低了50%,以及(3)在各种应用中,高带宽和低延迟。首先,在体系结构级别上,将部署光学功能(100个内核),以改善本地通信和无线通信,以通过提供足够的全球带宽来扩展核心数量到1000。其次,在电路级别上,将探索混合收发器架构,以基于SIGE/BICMOS技术与光学波导和环形谐振器相结合,以提供千核设计所需的大带宽。此外,将根据高级3D打印技术设计MM-WAVE/THZ频率宽带和定向天线来解决无线通信要求。该提案描述了一种结合技术,架构,算法和应用研究的变革性且可行的方法,用于设计可扩展和节能的NOC。这项研究的横切性质将在几个领域促进新的研究方向,涵盖技术/能源感知的NOC设计,新颖的计算机架构以及新兴技术的尖端建模和模拟工具。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CSCNN: Algorithm-hardware Co-design for CNN Accelerators using Centrosymmetric Filters
GCNAX: A Flexible and Energy-efficient Accelerator for Graph Convolutional Neural Networks
DozzNoC: Reducing Static and Dynamic Energy in NoCs with Low-latency Voltage Regulators using Machine Learning
DozzNoC:利用机器学习通过低延迟稳压器减少 NoC 中的静态和动态能量
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Avinash Karanth其他文献

Ultracompact and Low-Power Logic Circuits via Workfunction Engineering
通过功函数工程实现超紧凑和低功耗逻辑电路
Reconfigurable Gates with Sub-10nm Ambipolar SB-FinFETs for Logic Locking & Obfuscation
具有亚 10nm 双极 SB-FinFET 的可重构栅极,用于逻辑锁定
Sustainability in Network-on-Chips by Exploring Heterogeneity in Emerging Technologies
通过探索新兴技术的异构性实现片上网络的可持续性
  • DOI:
    10.1109/tsusc.2018.2861362
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Avinash Karanth;S. Kaya;A. Sikder;Daniel J. Carbaugh;S. Laha;D. DiTomaso;A. Louri;H. Xin;Junqiang Wu
  • 通讯作者:
    Junqiang Wu
Reflections of Cybersecurity Workshop for K-12 Teachers
K-12 教师网络安全研讨会的思考
SNAC: Mitigation of Snoop-Based Attacks with Multi-Tier Security in NoC Architectures
SNAC:通过 NoC 架构中的多层安全性缓解基于窥探的攻击

Avinash Karanth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Avinash Karanth', 18)}}的其他基金

Collaborative Research: DESC: Type II: Multi-Function Cross-Layer Electro-Optic Fabrics for Reliable and Sustainable Computing Systems
合作研究:DESC:II 型:用于可靠和可持续计算系统的多功能跨层电光织物
  • 批准号:
    2324645
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
  • 批准号:
    2311544
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: Language Abstractions for Reconfigurable Hardware Monitors on Manycore Architectures
SaTC:CORE:Small:众核架构上可重新配置硬件监视器的语言抽象
  • 批准号:
    1936794
  • 财政年份:
    2020
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Photonic Neural Network Accelerator for Energy-efficient Heterogeneous Multicore Architectures
SHF:中:协作研究:用于节能异构多核架构的光子神经网络加速器
  • 批准号:
    1901192
  • 财政年份:
    2019
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures for Optimized Energy, Performance and Reliability
SHF:中:协作研究:支持机器学习的片上网络架构,可优化能源、性能和可靠性
  • 批准号:
    1703013
  • 财政年份:
    2017
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
  • 批准号:
    1420718
  • 财政年份:
    2014
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
  • 批准号:
    1318981
  • 财政年份:
    2013
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research:EAGER:Exploiting Heterogeneity in Emerging Interconnect Technologies for Building Highly Scalable and Power-Efficient Network-on-Chips for Many-core Systems
合作研究:EAGER:利用新兴互连技术的异构性为多核系统构建高度可扩展且高能效的片上网络
  • 批准号:
    1342657
  • 财政年份:
    2013
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Power-Efficient Reconfigurable Wireless Network-on-Chip (NoC) Interconnects for Future Many-core Architectures
适用于未来众核架构的高能效可重配置无线片上网络 (NoC) 互连
  • 批准号:
    1129010
  • 财政年份:
    2011
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
CAREER: Design of Reconfigurable Power and Area-Efficient Nanophotonic Architectures for Future Multi-cores
职业:为未来多核设计可重构功率和面积高效的纳米光子架构
  • 批准号:
    1054339
  • 财政年份:
    2011
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
  • 批准号:
    72374217
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了