RAPID: Collaborative Research: Using Phylodynamics and Line Lists for Adaptive COVID-19 Monitoring
RAPID:协作研究:使用系统动力学和线路列表进行自适应 COVID-19 监测
基本信息
- 批准号:2027848
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It has been difficult to track and control the COVID-19 pandemic due to various factors such as asymptomatic transmission, high incubation period, human mobility, weather patterns and limited number of tests available. Especially as the number of cases rise, it will become hard to monitor, and request quarantine appropriately, as experience in other countries shows. Hence, this project aims to improve COVID-19 monitoring by designing more targeted and adaptive testing and intervention in a data-driven fashion. With both monitoring and intervention applications, this project directly attacks the problem through development of processes and actions to address this pandemic and also model and understand its spread. Apart from the immediate applications to the COVID-19 pandemic, the tools developed should be more broadly useful for other infectious disease settings (e.g. influenza). The team of Data Science, Network Science, Public Health and Phylogenetic analysis experts main approach for this question is to integrate several novel datasets via inference algorithms. The project focuses on two tasks: Task 1: Aligning phylodynamics data (PD) with line lists; and Task 2: Inferring transmission chains to new infections using aligned data. The teams prior works on interventions and monitoring have been highly successful in this regard. These inferred transmission chains naturally give guidance on whom to adaptively monitor and quarantine among the new infections. The project will release its methods as research code, which should be usable by both practitioners and modelers for faster monitoring under resource constraints.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于无症状传播、潜伏期长、人员流动性、天气模式和可用检测数量有限等多种因素,追踪和控制 COVID-19 大流行非常困难。特别是随着病例数量的增加,监测和适当要求隔离将变得困难,正如其他国家的经验所表明的那样。因此,该项目旨在通过以数据驱动的方式设计更有针对性和适应性的测试和干预来改善 COVID-19 监测。通过监测和干预应用,该项目通过开发流程和行动来直接解决问题,以解决这一流行病,并建模和了解其传播。除了直接应用于 COVID-19 大流行之外,开发的工具应该更广泛地用于其他传染病环境(例如流感)。由数据科学、网络科学、公共卫生和系统发育分析专家组成的团队解决这个问题的主要方法是通过推理算法整合几个新颖的数据集。该项目重点关注两项任务: 任务 1:将系统动力学数据 (PD) 与行列表对齐;任务 2:使用对齐数据推断新感染的传播链。该团队之前的干预和监测工作在这方面非常成功。这些推断的传播链自然会指导谁在新感染中进行适应性监测和隔离。该项目将以研究代码的形式发布其方法,可供从业者和建模者使用,以便在资源限制下更快地进行监控。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anil Kumar Vullikanti其他文献
Anil Kumar Vullikanti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anil Kumar Vullikanti', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317193 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: Detecting and Controlling Network-based Spread of Hospital Acquired Infections
III:媒介:合作研究:检测和控制医院获得性感染的网络传播
- 批准号:
1955797 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Efficient Distributed Computation of Large-Scale Graph Problems in Epidemiology and Contagion Dynamics
BIGDATA:协作研究:F:流行病学和传染动力学中大规模图问题的高效分布式计算
- 批准号:
1931628 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Efficient Distributed Computation of Large-Scale Graph Problems in Epidemiology and Contagion Dynamics
BIGDATA:协作研究:F:流行病学和传染动力学中大规模图问题的高效分布式计算
- 批准号:
1633028 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
ICES: Large: Collaborative Research: The Role of Space, Time and Information in Controlling Epidemics
ICES:大型:协作研究:空间、时间和信息在控制流行病中的作用
- 批准号:
1216000 - 财政年份:2012
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CAREER: Cross-layer optimization in Cognitive Radio Networks in the Physical interference model based on SINR constraints: Algorithmic Foundations
职业:基于 SINR 约束的物理干扰模型中认知无线电网络的跨层优化:算法基础
- 批准号:
0845700 - 财政年份:2009
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Collaborative Research: NECO: A Market-Driven Approach to Dynamic Spectrum Sharing
合作研究:NECO:市场驱动的动态频谱共享方法
- 批准号:
0831633 - 财政年份:2008
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403882 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425429 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425431 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403883 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant