RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area

RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集

基本信息

  • 批准号:
    2427233
  • 负责人:
  • 金额:
    $ 8.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-15 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

This Rapid Response Research (RAPID) grant project is dedicated to a comprehensive and in-depth collection of data to analyze the extensive societal consequences following the Francis Scott Key Bridge collapse in Baltimore, Maryland. This bridge, being a part of the I-695 beltway, lacks convenient detour options. Thus, its collapse leads widespread disruptions in mobility that affected not just the immediate vicinity but also resonated throughout the broader DC-Maryland-Virginia region. The objective of this project is to methodically gather time-sensitive data on traffic flow and community responses in the wake of this event, providing a detailed assessment of its repercussions. Moreover, this incident also brings a major disruption to freight transportation and supply chains on the East Coast. Given the reliance of freight models on occasionally collected, often proprietary data from commodities surveys, state reports, and customs statistics, this study aims to fill these gaps through an integrated approach for critical trucking, maritime, rail, and supply-chain data collection. These efforts are essential for enhancing the resilience of transportation networks and supply chains against future disruptions. For a broader audience, all the collected data will be made publicly available while carefully following rules for privacy protection and existing data usage agreements. Through sharing detailed findings and facilitating a broader understanding of the incident’s impacts, this project aspires to foster a more informed and prepared society, capable of effectively navigating the challenges posed by major infrastructural failures and their far-reaching impacts on communities and economies.The catastrophic collapse of the Francis Scott Key Bridge in Baltimore, Maryland, has precipitated significant disruptions across urban transportation networks, due to the lack of convenient alternative routes, affecting daily commutes for an estimated 34,000 individuals. Moreover, the collapse introduced considerable logistical difficulties, particularly in the Port of Baltimore, a critical national and international trade node. This project aims to develop a comprehensive data collection methodology, incorporating data integration and enhancement through existing data platforms (e.g., augmentations in commuting, trucking, rail, and marine traffic data alongside social media analytics), comprehensive surveys (e.g., examining travel behavior, community impact, and economic repercussions), and targeted interviews (e.g., exploring governmental responses and adaptations within the logistics network). Should initial analyses indicate a necessity, the spatial and temporal scope of data collection may be expanded to evaluate the impact of the bridge collapse comprehensively. This project is dedicated to improving data transparency and utility, employing elaborate documentation and a diversified strategy for data dissemination, including the development of a dedicated project website, utilization of the NSF NHERI Data Depot for data storage and dissemination, conducting workshops to engage a wide array of stakeholders, and presenting the data architecture at major transportation, infrastructure systems, and disaster conferences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该快速响应研究 (RAPID) 资助项目致力于全面、深入地收集数据,以分析马里兰州巴尔的摩弗朗西斯·斯科特桥 (Francis Scott Key Bridge) 倒塌后产生的广泛社会后果。这座桥是 I-695 公路的一部分。因此,它的崩溃导致了广泛的交通中断,不仅影响了附近地区,而且还影响了整个华盛顿特区-马里兰州-弗吉尼亚州地区。该项目的目标是有条不紊地收集有关时间敏感的数据。交通流量此外,鉴于货运模型依赖于偶尔收集的数据,这一事件还对东海岸的货运和供应链造成了重大干扰。根据商品调查、国家报告和海关统计数据,本研究旨在通过关键卡车运输、海运、铁路和供应链数据收集的综合方法来填补这些空白。这些努力对于增强运输网络和供应的弹性至关重要。对于更广泛的受众来说,所有收集到的数据都将公开,同时认真遵守隐私保护规则和现有数据使用协议,通过分享详细调查结果并促进对事件影响的更广泛了解,该项目致力于培养一个更加知情、准备充分的社会,能够做到这一点。有效应对重大基础设施故障带来的挑战及其对社区和经济的深远影响。马里兰州巴尔的摩弗朗西斯斯科特基大桥灾难性倒塌,由于缺乏便捷的交通,导致整个城市交通网络严重中断。替代路线,影响了大约 34,000 人的日常通勤。此外,倒塌带来了相当大的物流困难,特别是在重要的国内和国际贸易节点巴尔的摩港。该项目旨在开发一种综合数据收集方法,纳入数据集成。通过现有数据平台(例如,在社交媒体分析的同时增强通勤、卡车运输、铁路和海上交通数据)、综合调查(例如,检查旅行行为、社区影响和经济影响)和有针对性的访谈进行增强(例如,探索物流网络内政府的反应和调整)。如果初步分析表明有必要,可以扩大数据收集的空间和时间范围,以全面评估桥梁倒塌的影响。该项目致力于提高数据透明度。和实用性,采用详尽的文档和多样化的数据传播策略,包括开发专门的项目网站、利用 NSF NHERI 数据仓库进行数据存储和传播、举办研讨会以吸引广泛的利益相关者参与,并展示数据建筑学该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shanjiang Zhu其他文献

Bounding Box Approach to Network Pruning for Efficient Path Search through Large Networks
用于通过大型网络进行有效路径搜索的网络修剪的边界框方法
  • DOI:
    10.1061/(asce)cp.1943-5487.0000675
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xi Zhou;M. Venigalla;Shanjiang Zhu
  • 通讯作者:
    Shanjiang Zhu
A Portfolio Theory of Route Choice
路线选择的投资组合理论
Access to Destinations: Monitoring Land Use Activity Changes in the Twin Cities Metropolitan Region
前往目的地:监测双城大都市区的土地利用活动变化
  • DOI:
    10.1215/03616878-8641555
  • 发表时间:
    2008-07-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Iacono;D. Levinson;A. El;Rania Wasfi;Shanjiang Zhu
  • 通讯作者:
    Shanjiang Zhu
Developing a 24-Hour Large-Scale Microscopic Traffic Simulation Model for the Before-and-After Study of a New Tolled Freeway in the Washington, DC–Baltimore Region
开发 24 小时大规模微观交通仿真模型,用于华盛顿特区至巴尔的摩地区新建收费高速公路的前后研究
  • DOI:
    10.1061/(asce)te.1943-5436.0000767
  • 发表时间:
    2015-01-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chenfeng Xiong;Zheng Zhu;Xiang He;X. Chen;Shanjiang Zhu;S. Mahapatra;G. Chang;Lei Zhang
  • 通讯作者:
    Lei Zhang
Capturing the interaction between travel time reliability and route choice behavior based on the generalized Bayesian traffic model
基于广义贝叶斯交通模型捕获出行时间可靠性与路线选择行为之间的交互作用

Shanjiang Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shanjiang Zhu', 18)}}的其他基金

RAPID: Transit Network Disruption, Service Reliability, and Travel Behavior
RAPID:交通网络中断、服务可靠性和出行行为
  • 批准号:
    1649189
  • 财政年份:
    2016
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403882
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425429
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425431
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403883
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
  • 批准号:
    2426560
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了