RAPID: Transit Network Disruption, Service Reliability, and Travel Behavior

RAPID:交通网络中断、服务可靠性和出行行为

基本信息

  • 批准号:
    1649189
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2017-10-31
  • 项目状态:
    已结题

项目摘要

Major transit disruptions have become more frequent due to increasing maintenance needs for an aging infrastructure, system failures, and disasters. Both transportation agencies and travelers need better information to prepare for such events. Considering the significant public distress caused by such events, the objectives of this research are crucial to the well-being of our society. Understanding travelers' behavioral responses over time are essential to effective planning and management of multimodal transportation systems for infrastructure maintenance and disaster response. This Rapid Response Research (RAPID) project will collect unique and perishible data on system performance and travel behavior before, during and after each of the 15 Metro service disruption events (the SafeTrack project) in the Washington D.C. metropolitan area scheduled between June 2016 and March 2017. The analysis will advance our understanding on the impact of major transit service disruptions on a multi-modal transportation system, yielding insights on how to optimize the planning and execution of maintenance events. The field of transportation systems analysis will benefit from the detailed travel behavior adjustment and system-level re-equilibration observations collected from this project. Mass transit may be the only option for many low-income or disadvantaged travelers, and this research will also reveal members of these groups respond to transit service disruptions.The objectives of the research are to 1) collect unique system performance and travel behavior data sets before, during and after each of the 15 Metro service disruption events using state-of-the-art longitudinal behavior data collection methods; 2) test hypotheses on the impact of major transit service disruptions on a multi-modal transportation system; 3) advance understanding of human behavioral responses and system re-equilibration after such disruptions; and 4) systematically discover planning and operations strategies that can minimize the impact of major transit service shutdowns based on this improved understanding of travel behavior. This project will be the first comprehensive study on transit network disruption of this magnitude with complete before-and-after travel behavior and system performance data. Longitudinal travel behavior data produced from this project will also stimulate future research on transit network reliability, resiliency, and incident response. This project will fill a major gap in the literature on multi-modal, multi-dimensional travel behavioral responses to major transit network disruptions. This will also be a first research effort that explores the transportation system re-equilibration (or lack of it) after major transit network disruptions. Understanding how travelers respond to transit service disruptions is a critically theoretical prerequisite toward developing and implementing effective strategies (e.g., how to optimally deploy the reserved bus fleet) that minimize system impact and improve transit system reliability and resiliency.
由于基础设施老化、系统故障和灾难的维护需求不断增加,重大交通中断变得更加频繁。交通运输机构和旅客都需要更好的信息来为此类事件做好准备。考虑到此类事件造成的重大公众痛苦,这项研究的目标对于我们社会的福祉至关重要。了解旅行者随时间的行为反应对于有效规划和管理多式联运系统以进行基础设施维护和灾难响应至关重要。该快速响应研究 (RAPID) 项目将在 2016 年 6 月至 3 月期间在华盛顿特区都会区发生 15 起地铁服务中断事件(SafeTrack 项目)之前、期间和之后收集有关系统性能和出行行为的独特且易变的数据。 2017 年。该分析将加深我们对重大交通服务中断对多式联运系统影响的理解,从而深入了解如何优化维护活动的规划和执行。交通系统分析领域将受益于该项目收集的详细出行行为调整和系统级再平衡观测结果。公共交通可能是许多低收入或弱势旅行者的唯一选择,这项研究还将揭示这些群体的成员对交通服务中断的反应。研究的目标是 1) 收集独特的系统性能和出行行为数据集使用最先进的纵向行为数据收集方法,在 15 起地铁服务中断事件之前、期间和之后进行记录; 2) 测试重大交通服务中断对多式联运系统影响的假设; 3)加深对人类行为反应和系统在此类干扰后的重新平衡的理解; 4) 基于对出行行为的深入了解,系统地发现规划和运营策略,以最大限度地减少主要交通服务关闭的影响。该项目将是第一个针对如此大规模的交通网络中断的综合研究,其中包含完整的出行前后行为和系统性能数据。该项目产生的纵向出行行为数据还将刺激未来对交通网络可靠性、弹性和事件响应的研究。 该项目将填补有关对主要交通网络中断的多模式、多维度旅行行为响应的文献中的一个主要空白。这也将是第一个探索交通网络重大中断后交通系统重新平衡(或缺乏平衡)的研究工作。了解旅客如何应对交通服务中断是制定和实施有效策略(例如,如何优化部署预留巴士车队)的关键理论先决条件,以最大限度地减少系统影响并提高交通系统的可靠性和弹性。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Travel Behavior Reactions to Transit Service Disruptions: Study of Metro SafeTrack Projects in Washington, D.C.
出行行为对交通服务中断的反应:华盛顿特区地铁 SafeTrack 项目研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shanjiang Zhu其他文献

Bounding Box Approach to Network Pruning for Efficient Path Search through Large Networks
用于通过大型网络进行有效路径搜索的网络修剪的边界框方法
  • DOI:
    10.1061/(asce)cp.1943-5487.0000675
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xi Zhou;M. Venigalla;Shanjiang Zhu
  • 通讯作者:
    Shanjiang Zhu
A Portfolio Theory of Route Choice
路线选择的投资组合理论
Capturing the interaction between travel time reliability and route choice behavior based on the generalized Bayesian traffic model
基于广义贝叶斯交通模型捕获出行时间可靠性与路线选择行为之间的交互作用
Access to Destinations: Monitoring Land Use Activity Changes in the Twin Cities Metropolitan Region
前往目的地:监测双城大都市区的土地利用活动变化
  • DOI:
    10.1215/03616878-8641555
  • 发表时间:
    2008-07-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Iacono;D. Levinson;A. El;Rania Wasfi;Shanjiang Zhu
  • 通讯作者:
    Shanjiang Zhu
Developing a 24-Hour Large-Scale Microscopic Traffic Simulation Model for the Before-and-After Study of a New Tolled Freeway in the Washington, DC–Baltimore Region
开发 24 小时大规模微观交通仿真模型,用于华盛顿特区至巴尔的摩地区新建收费高速公路的前后研究
  • DOI:
    10.1061/(asce)te.1943-5436.0000767
  • 发表时间:
    2015-01-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chenfeng Xiong;Zheng Zhu;Xiang He;X. Chen;Shanjiang Zhu;S. Mahapatra;G. Chang;Lei Zhang
  • 通讯作者:
    Lei Zhang

Shanjiang Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shanjiang Zhu', 18)}}的其他基金

RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

面向交通预测的小样本深度网络模型研究
  • 批准号:
    62306152
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
城市交通-电力耦合复杂网络优化理论和方法研究
  • 批准号:
    52337003
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
复杂交通网络环境下公共交通出行起讫点特征机理解析与短时预测
  • 批准号:
    62362044
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
面向常态拥堵的城市轨道交通网络客流协调控制与智慧诱导综合管控研究
  • 批准号:
    72361012
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    地区科学基金项目
基于微分拟变分不等式的电力-交通耦合网络动态定价机制研究
  • 批准号:
    52307087
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Electric Bus Transit System in Canadian Cities: Adaptive Network Analysis and Optimization Toolkit
加拿大城市的电动公交系统:自适应网络分析和优化工具包
  • 批准号:
    RGPIN-2018-05994
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
An AI Data-driven simulation framework for an electric transit system and its integration with the power distribution network
人工智能数据驱动的电动交通系统仿真框架及其与配电网络的集成
  • 批准号:
    575639-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Alliance Grants
Illumination Optical Communication and Power Line Communication integrated Non-orthogonal Code Multi-level Modulation Network
照明光通信与电力线通信一体化非正交码多级调制网络
  • 批准号:
    22K19770
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
An AI Data-driven simulation framework for an electric transit system and its integration with the power distribution network
人工智能数据驱动的电动交通系统仿真框架及其与配电网络的集成
  • 批准号:
    575639-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Alliance Grants
Development of AI intelligent traffic monitoring system using self-powered censors
使用自供电传感器开发AI智能交通监控系统
  • 批准号:
    22K04371
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了