III: Medium: Collaborative Research: Detecting and Controlling Network-based Spread of Hospital Acquired Infections
III:媒介:合作研究:检测和控制医院获得性感染的网络传播
基本信息
- 批准号:1955797
- 负责人:
- 金额:$ 39.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Hospital Acquired Infections (HAIs) are becoming a major challenge in health systems worldwide. Detection and control of HAIs are challenging and resource intensive, because of the high costs of patient treatment and disinfection of hospital facilities, making them fundamental public health problems. Despite its huge importance for hospitals, and the interest from both clinical and epidemiological researchers, these problems remain poorly understood. This project seeks to develop a novel network-based approach to improve hospital infection control using models and data science. This proposal brings together a highly multi-disciplinary team of researchers, and will lead to fundamental contributions in different areas of computer science (data mining, machine learning, graph mining, social networks, and optimization), network science (mathematical models and dynamical systems) and computational epidemiology (infectious diseases, and hospital epidemiology). The planned work has immediate implications for public health e.g. it can lead to new design policies and guidance for hospital infection control. Research findings will be incorporated into graduate level classes, tutorials, contests and workshops to bring computational biologists and data miners together. There are several challenges in studying HAI outbreaks primarily because the dynamics of HAI spread are much more complex than other diseases, such as influenza, due to many more factors and pathways involved. To overcome these issues, the project team will use a new class of two-mode cascade models, which have very different dynamics than the standard models, and have not been studied in data mining. The will investigate the following topics: (1) Surveillance, early detection of HAI outbreaks, (2) Designing interventions to control the spread of HAIs, and (3) Modeling and estimating exposure risk for HAIs. A unified set of problems will be considered, including modeling, detection, control and inference of missing infections. These are challenging stochastic optimization problems on networks, and the project team will invent rigorous and scalable methods using tools from data mining, machine learning and combinatorial optimization. Their research will use a unique fine-grained, large-scale data set of operations from a public hospital, supplemented with data from other hospitals. The results will be validated with the help of domain experts including epidemiologists and clinicians involved in hospital infection control.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
医院获得性感染 (HAI) 正在成为全球卫生系统面临的重大挑战。由于患者治疗和医院设施消毒的成本高昂,医院感染的检测和控制具有挑战性且需要大量资源,使其成为根本性的公共卫生问题。尽管它对医院非常重要,并且临床和流行病学研究人员都对此很感兴趣,但人们对这些问题仍然知之甚少。该项目旨在开发一种基于网络的新型方法,利用模型和数据科学来改善医院感染控制。该提案汇集了高度多学科的研究人员团队,并将在计算机科学(数据挖掘、机器学习、图挖掘、社交网络和优化)、网络科学(数学模型和动力系统)的不同领域做出基础性贡献)和计算流行病学(传染病和医院流行病学)。计划中的工作对公共卫生具有直接影响,例如它可以为医院感染控制制定新的设计政策和指南。研究成果将纳入研究生课程、教程、竞赛和研讨会,将计算生物学家和数据挖掘者聚集在一起。研究 HAI 爆发存在一些挑战,主要是因为 HAI 传播的动态比流感等其他疾病复杂得多,因为涉及的因素和途径更多。为了克服这些问题,项目团队将使用一类新型的两模式级联模型,该模型的动力学与标准模型有很大不同,并且尚未在数据挖掘中进行研究。他们将研究以下主题:(1) 监测、早期发现 HAI 爆发,(2) 设计干预措施以控制 HAI 的传播,以及 (3) 建模和估计 HAI 的暴露风险。将考虑一组统一的问题,包括缺失感染的建模、检测、控制和推断。这些是网络上具有挑战性的随机优化问题,项目团队将使用数据挖掘、机器学习和组合优化等工具发明严格且可扩展的方法。他们的研究将使用公立医院独特的细粒度、大规模的手术数据集,并辅以其他医院的数据。结果将在包括流行病学家和参与医院感染控制的临床医生在内的领域专家的帮助下进行验证。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reconstructing an Epidemic Outbreak Using Steiner Connectivity
使用 Steiner 连接重建流行病爆发
- DOI:10.1609/aaai.v37i10.26372
- 发表时间:2023-06-26
- 期刊:
- 影响因子:0
- 作者:Ritwick Mishra;Jack Heavey;Gursharn Kaur;Abhijin Adiga;A. Vullikanti
- 通讯作者:A. Vullikanti
Differentially Private Densest Subgraph Detection
差分隐私最密集子图检测
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Nguyen, Dung;Vullikanti, Anil
- 通讯作者:Vullikanti, Anil
Deploying Vaccine Distribution Sites for Improved Accessibility and Equity to Support Pandemic Response
部署疫苗分发站点以提高可及性和公平性以支持流行病应对
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Li, G;Li, A;Marathe, M;Srinivasan, A;Tsepenekas, L;Vullikanti, A
- 通讯作者:Vullikanti, A
Fair Disaster Containment via Graph-Cut Problems
通过图割问题实现公平的灾难控制
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Dinitz, Michael;Srinivasan, Aravind;Tsepenekas, Leonidas;Vullikanti, Anil
- 通讯作者:Vullikanti, Anil
Provable Sensor Sets for Epidemic Detection over Networks with Minimum Delay
可验证的传感器组,可通过网络以最小的延迟进行流行病检测
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Heavey, Jack;Cui, Jiaming;Chen, Chen;Prakash, B. Aditya;Vullikanti, Anil
- 通讯作者:Vullikanti, Anil
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anil Kumar Vullikanti其他文献
Anil Kumar Vullikanti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anil Kumar Vullikanti', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317193 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Continuing Grant
RAPID: Collaborative Research: Using Phylodynamics and Line Lists for Adaptive COVID-19 Monitoring
RAPID:协作研究:使用系统动力学和线路列表进行自适应 COVID-19 监测
- 批准号:
2027848 - 财政年份:2020
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Efficient Distributed Computation of Large-Scale Graph Problems in Epidemiology and Contagion Dynamics
BIGDATA:协作研究:F:流行病学和传染动力学中大规模图问题的高效分布式计算
- 批准号:
1931628 - 财政年份:2019
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Efficient Distributed Computation of Large-Scale Graph Problems in Epidemiology and Contagion Dynamics
BIGDATA:协作研究:F:流行病学和传染动力学中大规模图问题的高效分布式计算
- 批准号:
1633028 - 财政年份:2016
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
ICES: Large: Collaborative Research: The Role of Space, Time and Information in Controlling Epidemics
ICES:大型:协作研究:空间、时间和信息在控制流行病中的作用
- 批准号:
1216000 - 财政年份:2012
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
CAREER: Cross-layer optimization in Cognitive Radio Networks in the Physical interference model based on SINR constraints: Algorithmic Foundations
职业:基于 SINR 约束的物理干扰模型中认知无线电网络的跨层优化:算法基础
- 批准号:
0845700 - 财政年份:2009
- 资助金额:
$ 39.2万 - 项目类别:
Continuing Grant
Collaborative Research: NECO: A Market-Driven Approach to Dynamic Spectrum Sharing
合作研究:NECO:市场驱动的动态频谱共享方法
- 批准号:
0831633 - 财政年份:2008
- 资助金额:
$ 39.2万 - 项目类别:
Continuing Grant
相似国自然基金
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
- 批准号:42377095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2402311 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310114 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310262 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310260 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant