CAREER: Cross-layer optimization in Cognitive Radio Networks in the Physical interference model based on SINR constraints: Algorithmic Foundations
职业:基于 SINR 约束的物理干扰模型中认知无线电网络的跨层优化:算法基础
基本信息
- 批准号:0845700
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-02-15 至 2015-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the most significant recent advances in wireless networks is theCognitive Radio Network (CRN), which can allow unlicensed (or secondary) users to access spectrum bands allocated to licensed (primary) users, without disrupting their performance.Since many licensed spectrum bands have been found to be greatly underutilized,CRNs can potentially enhance the spectrum usage significantly.The basic principle underlying CRNs is to first sense the spectrum usage by primary users, and then allocate power levels and channels opportunistically to the secondary users, so that the interference levels at primary users are within an acceptable threshold. Most theoretical analyses of protocols in such networks use disk/graph based approximations (in which "close-by" links cannot transmit simultaneously) to model wireless interference; however, these are inadequate and can lead to infeasible solutions with unacceptable interference levels at the primary users.The goal of this proposal is to examine the theoretical foundations of cross-layer optimization in Cognitive Radio Networks in the Physical interference model, which is considered a much better approximation of interference than disk based models. The results of this proposal will contribute to the theoretical underpinnings of the broader area of wireless networks, not just the application of CRN, because of the central role interference plays.
无线网络最近最重要的进展之一是认知无线电网络(CRN),它可以允许未授权(或次要)用户访问分配给授权(主要)用户的频段,而不会破坏其性能。研究发现,CRN 可以显着提高频谱利用率。CRN 的基本原理是首先感知主要用户的频谱使用情况,然后机会性地将功率级别和信道分配给次要用户,以便主要用户的干扰水平在可接受的阈值内。 此类网络中协议的大多数理论分析都使用基于磁盘/图形的近似(其中“邻近”链路不能同时传输)来模拟无线干扰;然而,这些都是不够的,并且可能导致不可行的解决方案,在主要用户处具有不可接受的干扰水平。该提案的目标是研究物理干扰模型中认知无线电网络中跨层优化的理论基础,该模型被认为是比基于磁盘的模型更好地近似干扰。 由于干扰起着核心作用,该提案的结果将有助于为更广泛的无线网络领域提供理论基础,而不仅仅是 CRN 的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anil Kumar Vullikanti其他文献
Anil Kumar Vullikanti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anil Kumar Vullikanti', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317193 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: Detecting and Controlling Network-based Spread of Hospital Acquired Infections
III:媒介:合作研究:检测和控制医院获得性感染的网络传播
- 批准号:
1955797 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Using Phylodynamics and Line Lists for Adaptive COVID-19 Monitoring
RAPID:协作研究:使用系统动力学和线路列表进行自适应 COVID-19 监测
- 批准号:
2027848 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Efficient Distributed Computation of Large-Scale Graph Problems in Epidemiology and Contagion Dynamics
BIGDATA:协作研究:F:流行病学和传染动力学中大规模图问题的高效分布式计算
- 批准号:
1931628 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Efficient Distributed Computation of Large-Scale Graph Problems in Epidemiology and Contagion Dynamics
BIGDATA:协作研究:F:流行病学和传染动力学中大规模图问题的高效分布式计算
- 批准号:
1633028 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
ICES: Large: Collaborative Research: The Role of Space, Time and Information in Controlling Epidemics
ICES:大型:协作研究:空间、时间和信息在控制流行病中的作用
- 批准号:
1216000 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: NECO: A Market-Driven Approach to Dynamic Spectrum Sharing
合作研究:NECO:市场驱动的动态频谱共享方法
- 批准号:
0831633 - 财政年份:2008
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
冷应激诱导RNA结合蛋白CIRBP在三叉神经病理痛中的作用和机制研究
- 批准号:82371217
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PGK1乙酰化修饰介导癌细胞与TAMs间Cross-talk调控胆囊癌EMT的研究
- 批准号:82373032
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
酸枣仁皂苷A对三叉神经痛中P2X7受体介导的NLRP3/Caspase-1通路的作用研究
- 批准号:82360199
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
线粒体ClpP激动剂通过铁死亡-免疫调控cross-talk治疗急性髓细胞白血病的机制研究
- 批准号:82370171
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
生长激素受体通过脂肪酸介导的肝脏-脂肪Cross-talk影响脂质内稳态的研究
- 批准号:82370866
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
CAREER: Taming Wireless Devices Cross-Layer Errors with Assistive Networked Edges
职业:利用辅助网络边缘解决无线设备跨层错误
- 批准号:
2312738 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Taming Wireless Devices Cross-Layer Errors with Assistive Networked Edges
职业:利用辅助网络边缘解决无线设备跨层错误
- 批准号:
2047484 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Machine Learning Driven Cross-Layer Optimizations for Storage
职业:机器学习驱动的跨层存储优化
- 批准号:
1942754 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Game-Theoretic Analysis and Design for Cross-Layer Cyber-Physical System Security and Resilience
职业:跨层网络物理系统安全性和弹性的博弈论分析和设计
- 批准号:
1847056 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Cross-Layer Power-Bounded High Performance Computing on Emerging and Future Heterogeneous Computer Clusters
职业:新兴和未来异构计算机集群上的跨层功率受限高性能计算
- 批准号:
1551511 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant