Collaborative Research: Micro-Electro-Mechanical Neural Integrated Sensing and Computing Units for Wearable Device Applications

合作研究:用于可穿戴设备应用的微机电神经集成传感和计算单元

基本信息

  • 批准号:
    1935598
  • 负责人:
  • 金额:
    $ 15.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

As wearable devices gain traction in the consumer market, unobtrusive and continuous monitoring of health and behavior directly translate to improving wellness and quality of life. These platforms provide new opportunities to detect the early onset of a disease, assess human performance, or enhance productivity, among many other potential applications. The principal challenge with these devices, however, is their battery life. Due to stringent space requirements, the batteries within such devices are small and can be quickly drained by performing sophisticated algorithms (e.g. machine learning) and heavy wireless communications. This, in turn, forces users to charge them more frequently and discourages widespread adoption of these devices. To overcome this challenge, the goal of the proposed project is to highlight the computational potential of micro-electro-mechanical-systems (MEMS) devices as hybrid sensing and computing elements to enable wearable devices to efficiently perform sophisticated algorithms while preserving their battery power. This project has tremendous potential to impact US industry by bringing forward a new, highly-intelligent computing unit technology that can be powered by a permanent battery and can be incorporated into many medical applications. Bringing together three institutions including the University Nebraska-Lincoln, the University of Texas at Dallas, and Texas A&M University The results of this project will also be adopted into various courses being taught at all three institutions. It will also be used in a NanoBridge summer camp beginning in 2020 to promote engineering interest among high school students from underrepresented groups through educational activities in MEMS and nanoengineering.This project aims to develop an ultra-power computing unit for wearable devices to locally perform machine-learning algorithms. The algorithms will be coded in the mechanical responses of MEMS that also simultaneously capture the measurement of interest, such as acceleration. Wearable devices equipped with machine learning algorithms hold great potential for saving lives, for example, by automatically detecting falls. However, due to stringent space requirements, the batteries within such devices are small and are quickly drained, for the most part, by multiple MEMS sensors read-out circuity, wireless communication, and microprocessors. This contributes directly to nonadherence as users must charge their devices frequently and may have trouble with false alarms caused by the less accurate algorithms that must be used due to limited local computing power. To overcome these challenges, a novel approach is proposed that moves some of the computing to the sensing physical layer. This approach builds on the fact that the sensing element of a MEMS device requires very little power, and its mechanical response coupled with other sensing elements can be tuned to naturally perform machine learning algorithms from their own measurements. Thus, rather than producing row measurement signals that need to be amplified, conditioned, and converted from analog to digital to be read and processed by a microprocessor, the response of the multiple sensing elements will collectively encode high-level information. This approach will enable wearable devices to locally perform advanced algorithms while consuming two orders of magnitude less power than present state-of-the-art technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着可穿戴设备在消费市场中获得吸引力,对健康和行为的不引人注目和持续监测直接转化为改善健康和生活质量。这些平台提供了新的机会,以检测疾病的早期发作,评估人类绩效或提高生产力,以及许多其他潜在的应用。但是,这些设备的主要挑战是电池寿命。由于空间的严格要求,此类设备内的电池很小,可以通过执行复杂的算法(例如机器学习)和重型无线通信来快速排干。反过来,这迫使用户更频繁地向他们收费,并不鼓励对这些设备的广泛采用。为了克服这一挑战,拟议项目的目标是突出微机械系统(MEMS)设备作为混合感应和计算元素的计算潜力,以使可穿戴设备有效地执行复杂的算法,同时保持电池电量。该项目通过提出一种可以由永久电池提供动力的新的,高智能的计算单元技术来影响美国行业的巨大潜力,并可以将其纳入许多医疗应用中。汇集了包括内布拉斯加林肯大学,得克萨斯大学达拉斯大学和德克萨斯A&M大学在内的三个机构,该项目的结果也将在所有三个机构都被教授的各种课程中。从2020年开始,它也将在纳米里奇夏令营中使用,以通过MEMS和纳米工程的教育活动来促进来自代表性不足的团体的高中生的工程兴趣。该项目旨在为可穿戴设备开发一个超功率计算单元,以使可穿戴设备以当地性能的机器学习算法。该算法将编码在MEM的机械响应中,该算法也同时捕获了感兴趣的测量值,例如加速度。配备机器学习算法的可穿戴设备具有巨大的潜力,例如自动检测到跌倒。但是,由于空间的严格要求,此类设备中的电池很小,并且在大多数情况下,由多个MEMS传感器读出循环,无线通信和微处理器迅速排干。这直接导致了不遵守,因为用户必须经常向其设备充电,并且可能由于较少准确的算法而导致的错误警报遇到了麻烦,而这些算法较少,因此由于本地计算能力有限,因此必须使用的算法。为了克服这些挑战,提出了一种新的方法,将某些计算移至感应物理层。这种方法基于以下事实:MEMS设备的传感元素几乎不需要功率,并且它的机械响应与其他传感元素可以调节以自然地从自己的测量中执行​​机器学习算法。因此,与其产生需要放大,调节和转换从模拟转换为数字的行测量信号以由微处理器读取和处理,而是多个感应元素的响应将集体编码高级信息。这种方法将使可穿戴设备能够在本地执行先进的算法,同时比目前的最先进技术少使用两个数量级的功率。该奖项反映了NSF的法定任务,并认为值得通过基金会的智力优点和更广泛的影响审查标准通过评估来进行评估。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonlinear Time-Series Prediction Using a Single MEMS Reservoir
使用单个 MEMS 储器的非线性时间序列预测
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siavash Pourkamali Anaraki其他文献

Siavash Pourkamali Anaraki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siavash Pourkamali Anaraki', 18)}}的其他基金

EAGER: Phononic Amplification for Active Filtering at Radio Frequency
EAGER:用于射频有源滤波的声子放大
  • 批准号:
    1940826
  • 财政年份:
    2019
  • 资助金额:
    $ 15.55万
  • 项目类别:
    Standard Grant
Development of a Miniaturized Electromechanical Biosensing Platform
微型机电生物传感平台的开发
  • 批准号:
    1923195
  • 财政年份:
    2019
  • 资助金额:
    $ 15.55万
  • 项目类别:
    Standard Grant
EAGER: Ultra-Sensitive Resonant MEMS Magnetometers with Internal Thermal-Piezoresistive Amplification
EAGER:具有内部热压阻放大功能的超灵敏谐振 MEMS 磁力计
  • 批准号:
    1345161
  • 财政年份:
    2013
  • 资助金额:
    $ 15.55万
  • 项目类别:
    Standard Grant
Fully Micromachined Cascade Impactors with Integrated Resonant Nanobalances
带有集成共振纳米天平的全微机械级联冲击器
  • 批准号:
    1300143
  • 财政年份:
    2013
  • 资助金额:
    $ 15.55万
  • 项目类别:
    Standard Grant
VERY LARGE SCALE INTEGRATED MEMS FOR MASSIVELY PARALLEL SCANNING PROBE NANOLITHOGRAPHY
用于大规模并行扫描探针纳米光刻的超大规模集成MEMS
  • 批准号:
    1344047
  • 财政年份:
    2013
  • 资助金额:
    $ 15.55万
  • 项目类别:
    Standard Grant
CAREER: Thermally Actuated Nanomechanical Resonators and Self-Sustained Oscillators
职业:热驱动纳米机械谐振器和自持振荡器
  • 批准号:
    1314259
  • 财政年份:
    2012
  • 资助金额:
    $ 15.55万
  • 项目类别:
    Standard Grant
CAREER: Thermally Actuated Nanomechanical Resonators and Self-Sustained Oscillators
职业:热驱动纳米机械谐振器和自持振荡器
  • 批准号:
    1056068
  • 财政年份:
    2011
  • 资助金额:
    $ 15.55万
  • 项目类别:
    Standard Grant
VERY LARGE SCALE INTEGRATED MEMS FOR MASSIVELY PARALLEL SCANNING PROBE NANOLITHOGRAPHY
用于大规模并行扫描探针纳米光刻的超大规模集成MEMS
  • 批准号:
    1028710
  • 财政年份:
    2010
  • 资助金额:
    $ 15.55万
  • 项目类别:
    Standard Grant
SGER: DESIGN AND OPTIMIZATION OF HIGH FREQUENCY SILICON CAPACITIVE RESONATORS FOR HIGH-Q OPERATION IN LIQUID MEDIA
SGER:用于液体介质中高 Q 操作的高频硅电容谐振器的设计和优化
  • 批准号:
    0839951
  • 财政年份:
    2008
  • 资助金额:
    $ 15.55万
  • 项目类别:
    Standard Grant
Development of a Hybrid Nano-Electro-Mechanical Sensor Technology for Nanoscale Aerosol Mass and Momemtumprobing
用于纳米级气溶胶质量和动量探测的混合纳米机电传感器技术的开发
  • 批准号:
    0800961
  • 财政年份:
    2008
  • 资助金额:
    $ 15.55万
  • 项目类别:
    Standard Grant

相似国自然基金

拟南芥ROP1和formin协作调控花粉管顶端微丝聚合的作用机制研究
  • 批准号:
    32270338
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
拟南芥ROP1和formin协作调控花粉管顶端微丝聚合的作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
狭小微装配空间多机械手自学习智能协作控制方法研究
  • 批准号:
    61803354
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
移动学术社区科研用户微知识持续协作行为及协同创新机制研究
  • 批准号:
    71804153
  • 批准年份:
    2018
  • 资助金额:
    18.5 万元
  • 项目类别:
    青年科学基金项目
微创关节置换手术机器人双向精确感知与人机协作控制方法研究
  • 批准号:
    U1713218
  • 批准年份:
    2017
  • 资助金额:
    299.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

Collaborative Research: REU Site: MICRO-CCS: Microbial Interactions Create Research Opportunities for Community College Students
合作研究:REU 网站:MICRO-CCS:微生物相互作用为社区学院学生创造研究机会
  • 批准号:
    2349221
  • 财政年份:
    2024
  • 资助金额:
    $ 15.55万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: MICRO-CCS: Microbial Interactions Create Research Opportunities for Community College Students
合作研究:REU 网站:MICRO-CCS:微生物相互作用为社区学院学生创造研究机会
  • 批准号:
    2349220
  • 财政年份:
    2024
  • 资助金额:
    $ 15.55万
  • 项目类别:
    Standard Grant
Collaborative Research: IntBIO: Micro level oxygen transport mechanisms in elite diving mammals: Capillary RBC to myofiber
合作研究:IntBIO:精英潜水哺乳动物的微水平氧运输机制:毛细血管红细胞到肌纤维
  • 批准号:
    2316378
  • 财政年份:
    2023
  • 资助金额:
    $ 15.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Molecular Mechanisms Underlying Repeated Evolution: Integrating Micro- and Macroevolutionary Analyses and Functional Genomics
合作研究:重复进化的分子机制:整合微观和宏观进化分析和功能基因组学
  • 批准号:
    2316783
  • 财政年份:
    2023
  • 资助金额:
    $ 15.55万
  • 项目类别:
    Standard Grant
Harnessing PET to Study the In Vivo Fate and Health Effects of Micro- and Nanoplastics
利用 PET 研究微塑料和纳米塑料的体内命运和健康影响
  • 批准号:
    10890903
  • 财政年份:
    2023
  • 资助金额:
    $ 15.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了