Development of a Miniaturized Electromechanical Biosensing Platform

微型机电生物传感平台的开发

基本信息

  • 批准号:
    1923195
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

The objective of this project is to develop a miniaturized, low cost, and high throughput biosensing technology that can be applied to a wide range of applications in medical diagnosis and biomedical research. U.S. health care spending is dramatically high and growing, making the ballooning cost of healthcare a major challenge for the nation. Affordable and ubiquitous screening technologies allowing frequent testing for early diagnosis of diseases are effective preventive methods to reduce health care cost. The proposed effort can pave the way towards low-cost sensors with simple and rapid sensing procedures for home based monitoring of regular bodily functions/parameters, and point-of-care diagnosis of more complex disorders. Furthermore, performing such research in an academic environment has the added advantage of training a few highly skilled engineers that can have significant contributions to the industry over the course of their career. Expertise in micro, nano and biomedical science and engineering is in high demand in the current high-tech US economy. Two full-time PhD students and up to three undergraduate researchers will be educated and involved in the proposed research and development activities. To promote diversity, efforts will be devoted to recruitment of highly qualified students from under-represented and minority groups to be involved in the activities. This project will also allow the investigators to enrich and invigorate their ongoing micro/nanotechnology educational and outreach programs by producing valuable new knowledge and interesting material for courses, lab tours, and demos.The proposed biosensing platform utilizes micro to nanoscale electromechanical resonators as highly sensitive mass sensors capable of detecting and measuring adsorption of fractions of single molecular layers onto their surfaces. There have been significant advances in micro/nanoscale electromechanical resonator technologies over the past two decades, mainly driven by applications of such devices as frequency references and filtering elements in electronics. With dimensions in the lower to submicron range, such devices can have mass sensitivities in the pico-gram to femto-gram range for microscale, and down to atto-grams and below for nanoscale resonators. This is several orders of magnitude better than that of conventional quartz crystal microbalances (QCM). High-resolution biomolecular sensors can be realized by covering the surface of such devices with a self-assembled monolayer of a selective molecular recognition element (MRE). However, despite their tremendous potential, utilization of Micro/Nano-mechanical resonators in biosensing applications remains almost non-existent. This is mainly due to the major bottleneck of operating such devices in contact with liquid media, where almost all biosensing activity takes place. Due to their small dimensions and consequently large surface area to volume ratio, the quality factor (Q) of such resonators drops significantly when immersed in liquid to the point that their resonance response completely disappears. Under this project, a comprehensive multi-faceted effort will be launched to further enhance MEMS resonator performances in contact with biological solutions and address some of the associated challenges for development of a general purpose biosensor array technology that can be applied to a wide variety of sensing applications. A new micromechanical structure is proposed, comprising of a piezoelectric resonator fabricated on a thin membrane with a backside reaction cavity where the molecular bonding to the membrane occurs. The membrane isolates the resonator and electrical signals required for its operation from the biological sample in order to achieve optimal performance for the device in contact with liquid.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是开发一种微型,低成本和高吞吐量的生物传感技术,该技术可用于医学诊断和生物医学研究中的广泛应用。 美国的医疗保健支出急剧很高,并且增长,这使得医疗保健的激烈成本成为国家的主要挑战。 负担得起且普遍存在的筛查技术允许频繁测试疾病的早期诊断是降低医疗保健成本的有效预防方法。 提出的努力可以通过简单且快速的传感程序铺平道路,用于对常规身体功能/参数的家庭监测,以及对更复杂疾病的护理点诊断。 此外,在学术环境中进行此类研究的额外优势是培训一些高技能的工程师,这些工程师可以在其职业生涯中为该行业做出重大贡献。 在当前高科技经济中,微型,纳米和生物医学科学和工程方面的专业知识需求很高。 两名专职博士生和最多三名本科研究人员将接受教育并参与拟议的研发活动。 为了促进多样性,努力将致力于招募来自代表性不足和少数群体的高素质学生,以参与活动。 该项目还将允许研究人员通过生成有价值的新知识和有趣的课程,实验室旅行和演示的有趣的新知识和有趣的材料来丰富和激发其持续的微/纳米技术教育和宣传计划。拟议的生物传感平台利用微观机械谐振器作为高度敏感的质量传感器,可用于检测单个摩尔级别的摩尔群落和摩尔群落的单个摩尔群体,以验证单级摩尔群体的摩尔群体,并将其用于验证单个摩尔群落的效果。 在过去的二十年中,微型/纳米级机电谐振技术取得了重大进展,主要是由诸如频率参考和电子设备过滤元素等设备的应用驱动。 随着尺寸在较低到亚微米范围内,此类设备可以在pico-gram对Microscale的femto-gram范围内具有质量敏感性,以及纳米级谐振器的atto-grams和atto-grams。 这比常规石英晶体微量平衡(QCM)好几个数量级。 高分辨率生物分子传感器可以通过使用选择性分子识别元件(MRE)的自组装单层(MRE)的自组装单层(MRE)来实现。 然而,尽管具有巨大的潜力,但在生物传感应用中对微/纳米机械谐振器的利用几乎仍然不存在。 这主要是由于与液体介质接触的主要操作设备的主要瓶颈,几乎所有的生物传感活动都发生。 由于它们的尺寸很小,因此表面积与体积比的较大,当浸入液体中的质量因子(Q)显着下降,以至于它们的谐振响应完全消失。 在该项目下,将发起一项全面的多方面努力,以进一步增强与生物解决方案接触的MEMS谐振器表现,并应对开发通用生物传感器阵列技术的一些相关挑战,可以应用于各种各样的感应应用。 提出了一种新的微机械结构,包括在薄膜上制造的压电共振器,其背面反应腔,其中分子键合在膜上发生。 该膜分离了其操作从生物样品中运行所需的谐振器和电信号,以实现与Liquid接触的设备的最佳性能。该奖项反映了NSF的法定任务,并且认为值得通过基金会的智力优点和更广泛的影响审查标准通过评估来获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siavash Pourkamali Anaraki其他文献

Siavash Pourkamali Anaraki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siavash Pourkamali Anaraki', 18)}}的其他基金

EAGER: Phononic Amplification for Active Filtering at Radio Frequency
EAGER:用于射频有源滤波的声子放大
  • 批准号:
    1940826
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Micro-Electro-Mechanical Neural Integrated Sensing and Computing Units for Wearable Device Applications
合作研究:用于可穿戴设备应用的微机电神经集成传感和计算单元
  • 批准号:
    1935598
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
EAGER: Ultra-Sensitive Resonant MEMS Magnetometers with Internal Thermal-Piezoresistive Amplification
EAGER:具有内部热压阻放大功能的超灵敏谐振 MEMS 磁力计
  • 批准号:
    1345161
  • 财政年份:
    2013
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Fully Micromachined Cascade Impactors with Integrated Resonant Nanobalances
带有集成共振纳米天平的全微机械级联冲击器
  • 批准号:
    1300143
  • 财政年份:
    2013
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
VERY LARGE SCALE INTEGRATED MEMS FOR MASSIVELY PARALLEL SCANNING PROBE NANOLITHOGRAPHY
用于大规模并行扫描探针纳米光刻的超大规模集成MEMS
  • 批准号:
    1344047
  • 财政年份:
    2013
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Thermally Actuated Nanomechanical Resonators and Self-Sustained Oscillators
职业:热驱动纳米机械谐振器和自持振荡器
  • 批准号:
    1314259
  • 财政年份:
    2012
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Thermally Actuated Nanomechanical Resonators and Self-Sustained Oscillators
职业:热驱动纳米机械谐振器和自持振荡器
  • 批准号:
    1056068
  • 财政年份:
    2011
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
VERY LARGE SCALE INTEGRATED MEMS FOR MASSIVELY PARALLEL SCANNING PROBE NANOLITHOGRAPHY
用于大规模并行扫描探针纳米光刻的超大规模集成MEMS
  • 批准号:
    1028710
  • 财政年份:
    2010
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
SGER: DESIGN AND OPTIMIZATION OF HIGH FREQUENCY SILICON CAPACITIVE RESONATORS FOR HIGH-Q OPERATION IN LIQUID MEDIA
SGER:用于液体介质中高 Q 操作的高频硅电容谐振器的设计和优化
  • 批准号:
    0839951
  • 财政年份:
    2008
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Development of a Hybrid Nano-Electro-Mechanical Sensor Technology for Nanoscale Aerosol Mass and Momemtumprobing
用于纳米级气溶胶质量和动量探测的混合纳米机电传感器技术的开发
  • 批准号:
    0800961
  • 财政年份:
    2008
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

基于深度光学的大视场高分辨宽景深小型化显微成像
  • 批准号:
    62301293
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
人工局域表面等离激元高灵敏传感及其系统小型化的关键技术研究
  • 批准号:
    62371132
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
小型化毫米波MIMO滤波天线阵列研究
  • 批准号:
    62301201
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向增强核磁共振波谱系统的频率捷变太赫兹回旋管小型化及频率一致性和功率稳定性研究
  • 批准号:
    62371092
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于海洋波浪能驱动的小型化新型发电装置研究
  • 批准号:
    42376219
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
  • 批准号:
    2338792
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
中小事業所の健康増進実施における文脈(組織要因)の類型化と類型別戦略モデルの構築
中小企业健康促进实施背景(组织因素)的分类以及每种类型的战略模型构建
  • 批准号:
    24K13496
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
極限環境域に適用可能な小型広帯域地震計の自動調軸機構の開発とパッケージ化
开发和封装可应用于极端环境的紧凑型宽带地震仪自对准机构
  • 批准号:
    24K07191
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
高強度小型加速器のグリーン化要素技術開発
高强度紧凑型加速器绿色元素技术开发
  • 批准号:
    24H00227
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
小分子変換反応の典型元素触媒を指向した新規高周期14族元素芳香族化合物の創製
针对小分子转化反应的典型元素催化剂创建新型高周期14族元素芳香族化合物
  • 批准号:
    23K26636
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了