Collaborative Research - GOALI: Dynamic Nuclear Spin Hyperpolarization via Color Centers in Diamond

合作研究 - GOALI:通过钻石色心实现动态核自旋超极化

基本信息

  • 批准号:
    1903839
  • 负责人:
  • 金额:
    $ 31.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

With support from the Chemical Measurement and Imaging Program, Professors Carlos A. Meriles (City College of New York) and Jeffrey A. Reimer (University of California at Berkeley), in collaboration with Delaware Diamond Knives, are working to enhance the sensitivity of nuclear magnetic resonance (NMR), an important chemical analysis tool used for wide-ranging applications that include determination of protein structure and folding dynamics; medical imaging (MRI); and probing porous rocks in search of oil. For all such applications, the limited sensitivity of NMR imposes restrictions on the minimum amount of sample that can be detected, and can result in long measurement times and limited access to expensive instrumentation. The Meriles/Reimer team is studying and utilizing interactions between light and engineered diamond crystals to enhance the sensitivity of NMR by several orders of magnitude under ambient conditions. Their multi-pronged approach - combining both fundamental and applied science - is enabling a wider range of applications and development of new contrast agents for multi-modal in-vivo imaging. This multi-institutional project is providing training opportunities targeting a diverse STEM workforce, including a number of educational opportunities at the undergraduate and high-school levels.The Meriles and Reimer groups are pursuing a novel route to generating augmented nuclear spin polarization by leveraging the singular properties of nitrogen-vacancy (NV) centers, a paramagnetic defect in diamond that can be completely polarized via optical excitation under ambient conditions. Specific aims include (i) defect engineering in diamond and systematic characterization of nuclear polarization buildup; (ii) development of novel, enhanced spin polarization transfer schemes tailored to both single-crystal and powdered diamond; and (iii) proof-of-principle demonstrations of polarization transfer from diamond to solid and fluid targets. The approach employs low magnetic fields (~10 mT), ambient (or near-ambient) temperature, and mild optical excitation, circumventing the need for complex, expensive hardware while offering regimes of spin polarization dynamics not explored in the past. The partnership with Delaware Diamond Knives is providing access to a broad set of diamond samples, whose characteristics (nitrogen content, 13C enrichment, surface termination, single crystal or variable-particle-size powder, etc.) are specifically tailored to attain optimal polarization transfer. The work aims to enable studies of molecular moieties in trace concentrations (typical in biochemistry), investigation of mass-limited systems (often found in synthetic chemistry), and high-throughput characterization of molecular libraries (as required in the pharmaceutical industry).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学测量和成像计划的支持下,教授Carlos A. Meriles(纽约城市学院)和Jeffrey A. Reimer(加利福尼亚大学伯克利分校)与特拉华州钻石刀合作,正在努力增强核磁雷(NMR)的敏感性(NMR),用于扩大范围应用程序的重要化学分析工具,包括范围内的质量和折叠率的确定;医学成像(MRI);并探测多孔岩石寻找石油。对于所有此类应用,NMR的敏感性有限,对可以检测到的最小样本量施加限制,并可能导致长时间的测量时间和有限的访问昂贵的仪器。 Meriles/Reimer团队正在研究和利用光和工程钻石晶体之间的相互作用,以在环境条件下通过几个数量级来增强NMR的敏感性。他们的多管齐下方法 - 结合了基本科学和应用科学 - 正在实现更广泛的应用和开发新的对比度代理,以用于多模式内部体内成像。 This multi-institutional project is providing training opportunities targeting a diverse STEM workforce, including a number of educational opportunities at the undergraduate and high-school levels.The Meriles and Reimer groups are pursuing a novel route to generating augmented nuclear spin polarization by leveraging the singular properties of nitrogen-vacancy (NV) centers, a paramagnetic defect in diamond that can be completely polarized via optical excitation under ambient conditions.具体目的包括(i)钻石中的缺陷工程以及核极化积累的系统表征; (ii)开发了针对单晶和粉末钻石量身定制的新型自旋极化转移方案; (iii)从钻石到固体和流体目标的极化转移的原理证明证明。该方法采用低磁场(〜10 mt),环境(或接近镜)温度以及轻度的光学激发,从而规定了对复杂,昂贵的硬件的需求,同时提供了过去未探索的自旋极化动力学的态度。与特拉华州钻石刀的合作关系正在提供对一套广泛的钻石样品的访问,其特征(氮含量,13C富集,表面终止,单晶或可变颗粒大小的粉末等)是专门针对最佳极化转移而定制的。这项工作旨在促进痕量浓度(典型的生物化学),对质量限制系统的研究(通常在合成化学中发现)以及分子图书馆的高通量表征的研究(按照制药行业所要求)的高通量表征(在制药行业所要求的)中,这反映了NSF的法定任务及其在范围内的支持,这是对分子图书馆的高度影响,这反映了NSF的法规范围,这表明了NSF的法规范围,这是对分子图书馆的高位表征的研究。 标准。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low-field microwave-mediated hyperpolarization in optically pumped diamond
光泵金刚石中低场微波介导的超极化
Carbon-13 dynamic nuclear polarization in diamond via a microwave-free integrated cross effect
通过无微波集成交叉效应实现金刚石中的碳 13 动态核极化
  • DOI:
    10.1073/pnas.1908780116
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Henshaw, Jacob;Pagliero, Daniela;Zangara, Pablo R.;Franzoni, María B.;Ajoy, Ashok;Acosta, Rodolfo H.;Reimer, Jeffrey A.;Pines, Alexander;Meriles, Carlos A.
  • 通讯作者:
    Meriles, Carlos A.
Mechanical rotation via optical pumping of paramagnetic impurities
  • DOI:
    10.1103/physrevb.100.235410
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    P. Zangara;A. Wood;M. Doherty;C. Meriles
  • 通讯作者:
    P. Zangara;A. Wood;M. Doherty;C. Meriles
Optically pumped spin polarization as a probe of many-body thermalization
光泵浦自旋极化作为多体热化的探针
  • DOI:
    10.1126/sciadv.aaz6986
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Pagliero, Daniela;Zangara, Pablo R.;Henshaw, Jacob;Ajoy, Ashok;Acosta, Rodolfo H.;Reimer, Jeffrey A.;Pines, Alexander;Meriles, Carlos A.
  • 通讯作者:
    Meriles, Carlos A.
Magnetic field induced delocalization in hybrid electron-nuclear spin ensembles
混合电子核自旋系综中的磁场诱导离域
  • DOI:
    10.1103/physrevb.103.064310
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Pagliero, Daniela;Zangara, Pablo R.;Henshaw, Jacob;Ajoy, Ashok;Acosta, Rodolfo H.;Manson, Neil;Reimer, Jeffrey A.;Pines, Alexander;Meriles, Carlos A.
  • 通讯作者:
    Meriles, Carlos A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Meriles其他文献

Carlos Meriles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos Meriles', 18)}}的其他基金

NSF-DFG Confine: Spin-Probe-Enabled Sensing of Fluids in Confined Geometries and Interfaces
NSF-DFG Confine:利用自旋探针对受限几何形状和界面中的流体进行传感
  • 批准号:
    2223461
  • 财政年份:
    2022
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Standard Grant
GOALI: Exploiting Dark Spins for Color-Center-Based Nanoscale Sensing and Imaging
GOALI:利用暗自旋进行基于色心的纳米级传感和成像
  • 批准号:
    2203904
  • 财政年份:
    2022
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Continuing Grant
Understanding and Controlling Rydberg States in Solid-State Platforms for Quantum Technologies
理解和控制量子技术固态平台中的里德伯态
  • 批准号:
    2216838
  • 财政年份:
    2022
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Continuing Grant
Paramagnetic Defects as a Platform for Quantum Spintronics in Diamond
顺磁缺陷作为金刚石量子自旋电子学的平台
  • 批准号:
    1914945
  • 财政年份:
    2019
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Continuing Grant
MRI: Development of a Scanning-Probe-Assisted Confocal Microscope for Investigating Optical and Magnetic Properties and Phenomena
MRI:开发扫描探针辅助共焦显微镜,用于研究光学和磁性特性及现象
  • 批准号:
    1726573
  • 财政年份:
    2017
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Standard Grant
Exploring Carrier Spin Injection, Transport, and Trapping in Diamond
探索金刚石中的载流子自旋注入、传输和捕获
  • 批准号:
    1619896
  • 财政年份:
    2016
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Continuing Grant
Magnetic resonance imaging and spectroscopy at the nanoscale via probe paramagnetic centers
通过探针顺磁中心进行纳米级磁共振成像和光谱学
  • 批准号:
    1401632
  • 财政年份:
    2014
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Standard Grant
GOALI: Research and development of chip-integrated, magnetic-resonance-based platforms for chemical sensing of trace systems and nuclear polarization of fluids
目标:研究和开发基于磁共振的芯片集成平台,用于痕量系统的化学传感和流体的核极化
  • 批准号:
    1309640
  • 财政年份:
    2013
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Standard Grant
Towards Spin-based Quantum Computing in the Solid State: Tomography of a Spin Node
迈向固态中基于自旋的量子计算:自旋节点的断层扫描
  • 批准号:
    1314205
  • 财政年份:
    2013
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Standard Grant
Nanoscale Nuclear Spin Imaging and Spectroscopy using Nitrogen-Vacancy Centers in Diamond
使用钻石中氮空位中心的纳米级核自旋成像和光谱学
  • 批准号:
    1111410
  • 财政年份:
    2011
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Standard Grant

相似国自然基金

开放人机协作场景中的未知目标识别和人体运动预测方法研究
  • 批准号:
    62203348
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
开放人机协作场景中的未知目标识别和人体运动预测方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向未知目标协作搬运的黏附型空中作业机器人动力学机理与协调控制研究
  • 批准号:
    52202452
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向变工况人机协作的非朗伯表面目标视觉定位研究
  • 批准号:
    52105525
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
面向变工况人机协作的非朗伯表面目标视觉定位研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
  • 批准号:
    2245117
  • 财政年份:
    2022
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129825
  • 财政年份:
    2022
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129776
  • 财政年份:
    2022
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
  • 批准号:
    2219788
  • 财政年份:
    2022
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
  • 批准号:
    2302217
  • 财政年份:
    2022
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了