Understanding and Controlling Rydberg States in Solid-State Platforms for Quantum Technologies

理解和控制量子技术固态平台中的里德伯态

基本信息

  • 批准号:
    2216838
  • 负责人:
  • 金额:
    $ 90万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Rydberg states are electronically excited orbitals in atoms or molecules whose energy structure approximately follow that observed in atomic hydrogen. Key to many breakthroughs in atomic, molecular and optical physics, research during the last decade has also shown that much of the physics governing Rydberg dynamics in cold atoms finds a natural extension in condensed matter, thus hinting at novel technologies that simultaneously benefit from Rydberg traits and a solid-state implementation. This proposal brings together experimentalists and theorists at the City College of New York (CCNY) and the Center for Ultracold Atoms at Harvard/MIT to advance the understanding of Rydberg physics in novel solid-state systems comprising two-dimensional materials and wide-bandgap semiconductors. This cross-disciplinary team is ideally positioned to advance the scientific knowledge of this field as it combines experts in atomic and condensed matter physics with a know-how encompassing optical spectroscopy, materials science, nanofabrication, and fundamental solid-state modeling. Adding to the scientific objectives, a key goal of this PREP project is to establish a formal partnership that simultaneously increases and enriches the participation of students and postdocs belonging to groups that are most underrepresented in physics. To this end, the group will capitalize on successful minority recruitment channels to reach the broadest student population.The work is organized around two distinct, though closely related material systems: The first set of activities zeroes in on the so-called “exciton-polaritons”, hybrid quasiparticles emerging from the strong coupling between excitons and photons in a cavity. The focus is on polaritons in transition metal dichalcogenides, whose Rydberg states will be investigated in the presence of magnetic field, strain, and dielectric engineering with special attention to polariton formation and non-linear interaction. Complementing this work, the group will investigate the formation of Rydberg states in neutral color centers in diamond, where hydrogenic orbitals — crudely associated to a hole revolving a negatively-charged core — emerge under resonant optical excitation. The group will experimentally explore and theoretically model Rydberg state dynamics in these systems, better understand the interplay between electronic spin polarization and Rydberg state creation, and investigate Rydberg blockade effects between adjacent color centers. The nature of the physical platforms investigated — at the center of broad ongoing efforts yet minimally explored in their connection with Rydberg physics — makes these activities of interest, particularly as a route to recreate in the solid state the features that make Rydberg states so attractive for applications in quantum information processing. In addition, an extensive set of initiatives is envisioned aimed at advancing the career paths of students and postdocs including a science communication bootcamp, an ethics training course, a professional development seminar series, and an annual research symposium. The group is committed to instilling a sense of community, which will be realized through a close interaction between participating students in the form of regular virtual meetings (either led by the PIs or taking place informally) and student exchange between groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来源于《2021 年美国救援计划法案》(公法 117-2)。里德伯格指出原子或分子中的电子激发轨道,其能量结构大致遵循原子氢中观察到的能量结构,这是许多突破的关键。在原子、分子和光学物理学领域,过去十年的研究还表明,控制冷原子里德伯动力学的许多物理学在凝聚态物质中找到了自然延伸,从而暗示了同时受益于的新技术该提案汇集了纽约城市学院 (CCNY) 和哈佛大学/麻省理工学院超冷原子中心的实验学家和理论家,以促进对新型固态系统中的里德堡物理的理解。这个跨学科团队将原子和凝聚态物理专家与光学光谱学专业知识相结合,非常适合推进该领域的科学知识,除了科学目标之外,该 PREP 项目的一个关键目标是建立正式的合作伙伴关系,同时增加和丰富属于在该领域代表性最不足的群体的学生和博士后的参与。为此,该小组将利用成功的少数群体招募渠道来接触最广泛的学生群体。这项工作围绕两个截然不同但密切相关的材料系统进行:第一组活动集中在所谓的“物理学”上。 “激子-极化子”,是由激子和光子在空腔中的强耦合产生的混合准粒子。重点是过渡金属二硫化物中的极化子,将在磁场、应变和介电工程存在的情况下研究其里德伯态。为了补充这项工作,该小组将特别关注钻石中性色心的里德伯态的形成,其中氢轨道是粗略的。与旋转带负电核心的空穴相关——在共振光激发下出现,该小组将通过实验探索这些系统中的里德堡态动力学并对其进行理论上建模,更好地了解电子自旋极化和里德堡态创建之间的相互作用,并研究里德堡封锁效应。所研究的物理平台的性质——处于广泛持续努力的中心,但与里德堡物理学的联系很少被探索——使得这些活动引起人们的兴趣,特别是作为在固态中重建特征的途径。使里德伯格州对量子信息处理的应用如此有吸引力。此外,还设想了一系列旨在推进学生和博士后职业道路的举措,包括科学传播训练营、道德培训课程、专业发展研讨会系列和该小组致力于灌输一种社区意识,这将通过参与学生之间以定期虚拟会议(由 PI 主持或非正式举行)和小组之间的学生交流的形式进行密切互动来实现。 .这个奖项体现了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Meriles其他文献

Carlos Meriles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos Meriles', 18)}}的其他基金

NSF-DFG Confine: Spin-Probe-Enabled Sensing of Fluids in Confined Geometries and Interfaces
NSF-DFG Confine:利用自旋探针对受限几何形状和界面中的流体进行传感
  • 批准号:
    2223461
  • 财政年份:
    2022
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
GOALI: Exploiting Dark Spins for Color-Center-Based Nanoscale Sensing and Imaging
GOALI:利用暗自旋进行基于色心的纳米级传感和成像
  • 批准号:
    2203904
  • 财政年份:
    2022
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Paramagnetic Defects as a Platform for Quantum Spintronics in Diamond
顺磁缺陷作为金刚石量子自旋电子学的平台
  • 批准号:
    1914945
  • 财政年份:
    2019
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Collaborative Research - GOALI: Dynamic Nuclear Spin Hyperpolarization via Color Centers in Diamond
合作研究 - GOALI:通过钻石色心实现动态核自旋超极化
  • 批准号:
    1903839
  • 财政年份:
    2019
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
MRI: Development of a Scanning-Probe-Assisted Confocal Microscope for Investigating Optical and Magnetic Properties and Phenomena
MRI:开发扫描探针辅助共焦显微镜,用于研究光学和磁性特性及现象
  • 批准号:
    1726573
  • 财政年份:
    2017
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Exploring Carrier Spin Injection, Transport, and Trapping in Diamond
探索金刚石中的载流子自旋注入、传输和捕获
  • 批准号:
    1619896
  • 财政年份:
    2016
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Magnetic resonance imaging and spectroscopy at the nanoscale via probe paramagnetic centers
通过探针顺磁中心进行纳米级磁共振成像和光谱学
  • 批准号:
    1401632
  • 财政年份:
    2014
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
GOALI: Research and development of chip-integrated, magnetic-resonance-based platforms for chemical sensing of trace systems and nuclear polarization of fluids
目标:研究和开发基于磁共振的芯片集成平台,用于痕量系统的化学传感和流体的核极化
  • 批准号:
    1309640
  • 财政年份:
    2013
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Towards Spin-based Quantum Computing in the Solid State: Tomography of a Spin Node
迈向固态中基于自旋的量子计算:自旋节点的断层扫描
  • 批准号:
    1314205
  • 财政年份:
    2013
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Nanoscale Nuclear Spin Imaging and Spectroscopy using Nitrogen-Vacancy Centers in Diamond
使用钻石中氮空位中心的纳米级核自旋成像和光谱学
  • 批准号:
    1111410
  • 财政年份:
    2011
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant

相似国自然基金

基于共识主动性学习的城市电动汽车充电、行驶行为与交通网—配电网协同控制策略研究
  • 批准号:
    62363022
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
增材制造镁合金点阵结构设计与降解速率控制在围关节骨缺损修复中作用机理研究
  • 批准号:
    82372092
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
面向惯性同步构网型风电场的源-网交互机理与致稳控制研究
  • 批准号:
    52307208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向数据中心光交换端网融合调度与协同控制技术研究
  • 批准号:
    62301062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向在轨大型结构的空间机器人多机协同接管控制方法研究
  • 批准号:
    52305036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
  • 批准号:
    BB/Y005694/1
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Research Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319849
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
CAREER: Rational Design of Dual-Functional Photocatalysts for Synthetic Reactions: Controlling Photosensitization and Reaction with a Single Nanocrystal
职业:用于合成反应的双功能光催化剂的合理设计:用单个纳米晶体控制光敏化和反应
  • 批准号:
    2339866
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了