Nanoscale Nuclear Spin Imaging and Spectroscopy using Nitrogen-Vacancy Centers in Diamond

使用钻石中氮空位中心的纳米级核自旋成像和光谱学

基本信息

  • 批准号:
    1111410
  • 负责人:
  • 金额:
    $ 40.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-15 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

With support from the Chemical Measurement and Imaging program in the Division of Chemistry, and co-funding from the Instrument Development for Biological Research program in the Division of Biological Infrastructure, Prof. Carlos Meriles and his group at the City University of New York - City College are devising new approaches to magnetic resonance imaging (MRI). This important analytical tool is used by scientists, health professionals, and lab technicians to address a broad range of questions such as the functioning of cells and proteins, the monitoring and optimization of chemical processes in industry, and the diagnosis of organ dysfunction in humans. Magnetic resonance as currently practiced lacks the sensitivity necessary to image samples with high (sub-micron) spatial resolution, a serious impediment. Dr. Meriles addresses this problem with a novel strategy ultimately aimed at probing small living systems with nanometer resolution. The strategy makes use of "NV centers"- imperfections in diamond crystals which are extremely sensitive to local magnetic fields. By integrating magnetic resonance with scanning and optical microscopy, individual NV centers near a sample surface will be manipulated and detected, providing chemical information about the sample surface. A unique aspect of this approach is that, unlike mainstream MRI, bulky superconducting magnets and strong field gradients are unnecessary. The work promises broad scientific and technological impact, with potential applications including nanoscale imaging of single cells at virtually zero magnetic field, high-resolution NMR spectroscopy of microorganisms under ambient conditions, sensing of molecular diffusion in nanoporous or membranous systems, and the monitoring of cell activity in single muscle cells or neuron networks. Accompanying this effort is a broad educational plan, which, besides graduate student training, includes activities aimed at improving instructional laboratories and various research opportunities for underprivileged students through summer activities within CCNY and in host laboratories of partner institutions.
在化学系化学测量和成像项目的支持下,以及生物基础设施部生物研究仪器开发项目的共同资助下,纽约市立大学 Carlos Meriles 教授及其团队大学正在设计新的磁共振成像(MRI)方法。 科学家、卫生专业人员和实验室技术人员使用这一重要的分析工具来解决广泛的问题,例如细胞和蛋白质的功能、工业化学过程的监测和优化以及人类器官功能障碍的诊断。目前实践的磁共振缺乏以高(亚微米)空间分辨率对样品进行成像所需的灵敏度,这是一个严重的障碍。 Meriles 博士通过一种新颖的策略解决了这个问题,最终旨在以纳米分辨率探测小型生命系统。该策略利用“NV中心”——金刚石晶体中的缺陷,对局部磁场极其敏感。通过将磁共振与扫描和光学显微镜相结合,可以操纵和检测样品表面附近的各个 NV 中心,从而提供有关样品表面的化学信息。这种方法的独特之处在于,与主流 MRI 不同,不需要笨重的超导磁体和强场梯度。这项工作有望产生广泛的科学和技术影响,潜在的应用包括在几乎零磁场下的单细胞纳米级成像、环境条件下微生物的高分辨率核磁共振波谱、纳米多孔或膜系统中分子扩散的传感以及细胞的监测单个肌肉细胞或神经元网络的活动。伴随这一努力的是一项广泛的教育计划,除了研究生培训外,还包括旨在通过 CCNY 内和合作机构主办实验室的暑期活动改善教学实验室和为贫困学生提供各种研究机会的活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Meriles其他文献

Carlos Meriles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos Meriles', 18)}}的其他基金

NSF-DFG Confine: Spin-Probe-Enabled Sensing of Fluids in Confined Geometries and Interfaces
NSF-DFG Confine:利用自旋探针对受限几何形状和界面中的流体进行传感
  • 批准号:
    2223461
  • 财政年份:
    2022
  • 资助金额:
    $ 40.4万
  • 项目类别:
    Standard Grant
GOALI: Exploiting Dark Spins for Color-Center-Based Nanoscale Sensing and Imaging
GOALI:利用暗自旋进行基于色心的纳米级传感和成像
  • 批准号:
    2203904
  • 财政年份:
    2022
  • 资助金额:
    $ 40.4万
  • 项目类别:
    Continuing Grant
Understanding and Controlling Rydberg States in Solid-State Platforms for Quantum Technologies
理解和控制量子技术固态平台中的里德伯态
  • 批准号:
    2216838
  • 财政年份:
    2022
  • 资助金额:
    $ 40.4万
  • 项目类别:
    Continuing Grant
Paramagnetic Defects as a Platform for Quantum Spintronics in Diamond
顺磁缺陷作为金刚石量子自旋电子学的平台
  • 批准号:
    1914945
  • 财政年份:
    2019
  • 资助金额:
    $ 40.4万
  • 项目类别:
    Continuing Grant
Collaborative Research - GOALI: Dynamic Nuclear Spin Hyperpolarization via Color Centers in Diamond
合作研究 - GOALI:通过钻石色心实现动态核自旋超极化
  • 批准号:
    1903839
  • 财政年份:
    2019
  • 资助金额:
    $ 40.4万
  • 项目类别:
    Standard Grant
MRI: Development of a Scanning-Probe-Assisted Confocal Microscope for Investigating Optical and Magnetic Properties and Phenomena
MRI:开发扫描探针辅助共焦显微镜,用于研究光学和磁性特性及现象
  • 批准号:
    1726573
  • 财政年份:
    2017
  • 资助金额:
    $ 40.4万
  • 项目类别:
    Standard Grant
Exploring Carrier Spin Injection, Transport, and Trapping in Diamond
探索金刚石中的载流子自旋注入、传输和捕获
  • 批准号:
    1619896
  • 财政年份:
    2016
  • 资助金额:
    $ 40.4万
  • 项目类别:
    Continuing Grant
Magnetic resonance imaging and spectroscopy at the nanoscale via probe paramagnetic centers
通过探针顺磁中心进行纳米级磁共振成像和光谱学
  • 批准号:
    1401632
  • 财政年份:
    2014
  • 资助金额:
    $ 40.4万
  • 项目类别:
    Standard Grant
GOALI: Research and development of chip-integrated, magnetic-resonance-based platforms for chemical sensing of trace systems and nuclear polarization of fluids
目标:研究和开发基于磁共振的芯片集成平台,用于痕量系统的化学传感和流体的核极化
  • 批准号:
    1309640
  • 财政年份:
    2013
  • 资助金额:
    $ 40.4万
  • 项目类别:
    Standard Grant
Towards Spin-based Quantum Computing in the Solid State: Tomography of a Spin Node
迈向固态中基于自旋的量子计算:自旋节点的断层扫描
  • 批准号:
    1314205
  • 财政年份:
    2013
  • 资助金额:
    $ 40.4万
  • 项目类别:
    Standard Grant

相似国自然基金

真核核糖体组装因子Sda1的结构和功能研究
  • 批准号:
    31900930
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
模拟微重力效应三维旋转培养促进造血干细胞向巨核细胞分化的机制研究
  • 批准号:
    31600683
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
四极核旋转边带三轴NMR陀螺仪精密测量惯性转动的研究
  • 批准号:
    91436106
  • 批准年份:
    2014
  • 资助金额:
    99.0 万元
  • 项目类别:
    重大研究计划
地核和下地幔底部结构和动力学探测
  • 批准号:
    41330209
  • 批准年份:
    2013
  • 资助金额:
    290.0 万元
  • 项目类别:
    重点项目
单色近紫外激光泵浦旋转无机远程荧光体的红绿蓝光及核壳光散射作用机制
  • 批准号:
    61205023
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Nanoscale nuclear spin resonance imaging in a quantum Hall system
量子霍尔系统中的纳米级核自旋共振成像
  • 批准号:
    26390006
  • 财政年份:
    2014
  • 资助金额:
    $ 40.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arbitrary Pulse Shaping to Advance Electron Paramagnetic Resonance Tools for Biom
任意脉冲整形促进 Biom 电子顺磁共振工具的发展
  • 批准号:
    8465247
  • 财政年份:
    2011
  • 资助金额:
    $ 40.4万
  • 项目类别:
Arbitrary Pulse Shaping to Advance Electron Paramagnetic Resonance Tools for Biom
任意脉冲整形促进 Biom 电子顺磁共振工具的发展
  • 批准号:
    8298123
  • 财政年份:
    2011
  • 资助金额:
    $ 40.4万
  • 项目类别:
Arbitrary Pulse Shaping to Advance Electron Paramagnetic Resonance Tools for Biom
任意脉冲整形促进 Biom 电子顺磁共振工具的发展
  • 批准号:
    8164864
  • 财政年份:
    2011
  • 资助金额:
    $ 40.4万
  • 项目类别:
Cantilever Magnetic Resonance of Biomolecules
生物分子的悬臂磁共振
  • 批准号:
    7656136
  • 财政年份:
    2004
  • 资助金额:
    $ 40.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了