Towards Spin-based Quantum Computing in the Solid State: Tomography of a Spin Node
迈向固态中基于自旋的量子计算:自旋节点的断层扫描
基本信息
- 批准号:1314205
- 负责人:
- 金额:$ 38.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Harnessing the quantum behavior of nanoscopic physical systems is at the center of a broad cross-disciplinary effort driven by the promise of various applications for information processing and secure communication. The prospect of performance gains and increased complexity is driving interest in new devices for existing or new functions (particularly, quantum information processing (QIP) protocols) as well as new paradigms for system architectures beyond present technology. Implementations based on solid-state "spin complexes" formed by individual paramagnetic dopants and neighboring nuclear and electronic spins are of particular importance because spin-based quantum technology is well positioned to overcome the obstacles to scaling. Assembling atomically identical spin clusters, however, is unlikely in the near term future, making new protocols necessary to precisely determine the spatial structure of an individual node and selectively address single spins within the complex. In line with these ideas, this grant articulates state-of-the-art nanoscale technology and novel spin manipulation schemes to resolve the network of relative couplings of nuclear spins in the vicinity of the so-called NV center in diamond, arguably one of the most promising platforms for future spintronic and QIP devices. Underlying our effort is the notion of circuits configured to exploit the atomic scale differences between logic units so as to process quantum information in optimal ways. Capitalizing on multi-dimensional spectroscopy and high-resolution imaging schemes, it will be possible to expose the structure and connectivity within the nuclear spin network of a given node in ways resembling the solving of a complex molecular structure. Such information will be crucial to identifying and exploiting long-lived nuclear memories, or to implementing quantum correction protocols without resorting to additional, ad-hoc coupling interfaces. Besides the technological and scientific advantages, our work is expected to have a broad educational outcome because it will offer students a unique inter-disciplinary scientific training and the ability to interact with a network of collaborating labs. These partnerships not only will provide a broad dissemination platform but also will allow the PI to advance ongoing outreach programs designed to provide meaningful research experiences to underprivileged students through summer activities. These plans gain special meaning at City College, a minority serving institution with a uniquely diverse population of inner-city students. Capitalizing on the various recruitment channels at hand, the teaching, mentoring and career counseling components of this project will truly broaden participation, while encouraging groups underrepresented in the sciences to pursue scientific careers both in academia and in industry.
利用纳米物理系统的量子行为是广泛的跨学科努力的核心,这些努力是由信息处理和安全通信的各种应用的前景推动的。性能提升和复杂性增加的前景正在推动人们对用于现有或新功能(特别是量子信息处理(QIP)协议)的新设备以及超越现有技术的系统架构的新范例的兴趣。基于由单个顺磁掺杂剂和邻近的核和电子自旋形成的固态“自旋复合物”的实现特别重要,因为基于自旋的量子技术能够很好地克服缩放的障碍。然而,在近期内不太可能组装原子上相同的自旋簇,这使得需要新的协议来精确确定单个节点的空间结构并选择性地解决复合体中的单个自旋。根据这些想法,这项资助阐明了最先进的纳米技术和新颖的自旋操纵方案,以解决所谓的金刚石 NV 中心附近核自旋相对耦合的网络,可以说是金刚石中的 NV 中心之一。未来自旋电子和 QIP 器件最有前途的平台。我们努力的基础是配置电路的概念,以利用逻辑单元之间的原子尺度差异,以便以最佳方式处理量子信息。利用多维光谱和高分辨率成像方案,将有可能以类似于解决复杂分子结构的方式揭示给定节点的核自旋网络内的结构和连接性。这些信息对于识别和利用长寿命核存储器,或者在不诉诸额外的临时耦合接口的情况下实施量子校正协议至关重要。除了技术和科学优势之外,我们的工作预计将产生广泛的教育成果,因为它将为学生提供独特的跨学科科学培训以及与合作实验室网络互动的能力。这些合作伙伴关系不仅将提供广泛的传播平台,而且还将允许 PI 推进正在进行的外展项目,旨在通过暑期活动为贫困学生提供有意义的研究经验。这些计划在城市学院具有特殊的意义,城市学院是一所服务少数族裔的机构,拥有独特多元化的内城学生群体。利用现有的各种招聘渠道,该项目的教学、指导和职业咨询部分将真正扩大参与范围,同时鼓励在科学领域代表性不足的群体在学术界和工业界追求科学职业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Meriles其他文献
Carlos Meriles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Meriles', 18)}}的其他基金
NSF-DFG Confine: Spin-Probe-Enabled Sensing of Fluids in Confined Geometries and Interfaces
NSF-DFG Confine:利用自旋探针对受限几何形状和界面中的流体进行传感
- 批准号:
2223461 - 财政年份:2022
- 资助金额:
$ 38.12万 - 项目类别:
Standard Grant
GOALI: Exploiting Dark Spins for Color-Center-Based Nanoscale Sensing and Imaging
GOALI:利用暗自旋进行基于色心的纳米级传感和成像
- 批准号:
2203904 - 财政年份:2022
- 资助金额:
$ 38.12万 - 项目类别:
Continuing Grant
Understanding and Controlling Rydberg States in Solid-State Platforms for Quantum Technologies
理解和控制量子技术固态平台中的里德伯态
- 批准号:
2216838 - 财政年份:2022
- 资助金额:
$ 38.12万 - 项目类别:
Continuing Grant
Paramagnetic Defects as a Platform for Quantum Spintronics in Diamond
顺磁缺陷作为金刚石量子自旋电子学的平台
- 批准号:
1914945 - 财政年份:2019
- 资助金额:
$ 38.12万 - 项目类别:
Continuing Grant
Collaborative Research - GOALI: Dynamic Nuclear Spin Hyperpolarization via Color Centers in Diamond
合作研究 - GOALI:通过钻石色心实现动态核自旋超极化
- 批准号:
1903839 - 财政年份:2019
- 资助金额:
$ 38.12万 - 项目类别:
Standard Grant
MRI: Development of a Scanning-Probe-Assisted Confocal Microscope for Investigating Optical and Magnetic Properties and Phenomena
MRI:开发扫描探针辅助共焦显微镜,用于研究光学和磁性特性及现象
- 批准号:
1726573 - 财政年份:2017
- 资助金额:
$ 38.12万 - 项目类别:
Standard Grant
Exploring Carrier Spin Injection, Transport, and Trapping in Diamond
探索金刚石中的载流子自旋注入、传输和捕获
- 批准号:
1619896 - 财政年份:2016
- 资助金额:
$ 38.12万 - 项目类别:
Continuing Grant
Magnetic resonance imaging and spectroscopy at the nanoscale via probe paramagnetic centers
通过探针顺磁中心进行纳米级磁共振成像和光谱学
- 批准号:
1401632 - 财政年份:2014
- 资助金额:
$ 38.12万 - 项目类别:
Standard Grant
GOALI: Research and development of chip-integrated, magnetic-resonance-based platforms for chemical sensing of trace systems and nuclear polarization of fluids
目标:研究和开发基于磁共振的芯片集成平台,用于痕量系统的化学传感和流体的核极化
- 批准号:
1309640 - 财政年份:2013
- 资助金额:
$ 38.12万 - 项目类别:
Standard Grant
Nanoscale Nuclear Spin Imaging and Spectroscopy using Nitrogen-Vacancy Centers in Diamond
使用钻石中氮空位中心的纳米级核自旋成像和光谱学
- 批准号:
1111410 - 财政年份:2011
- 资助金额:
$ 38.12万 - 项目类别:
Standard Grant
相似国自然基金
基于旋转多普勒效应的大气涡量测量方法研究
- 批准号:42305137
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于心理旋转效应的曲线隧道行车风险特性与安全优化方法研究
- 批准号:52362050
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
基于旋转电场的非线性电渗颗粒操控机理及其加速免疫检测的实验研究
- 批准号:12372260
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于信息融合的旋转机械健康状态检测与剩余寿命预测
- 批准号:72271200
- 批准年份:2022
- 资助金额:47 万元
- 项目类别:面上项目
基于椎间孔容积及椎间盘力学特性变化探讨颈椎旋转手法侧屈体位的生物力学机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
$ 38.12万 - 项目类别:
Studentship
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
- 批准号:
EP/X039889/1 - 财政年份:2024
- 资助金额:
$ 38.12万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
- 批准号:
EP/X040380/1 - 财政年份:2024
- 资助金额:
$ 38.12万 - 项目类别:
Research Grant
CAREER: Integrating Magnetism into Noncentrosymmetric Frameworks for Spin-based Electronics
职业:将磁性集成到基于自旋电子的非中心对称框架中
- 批准号:
2338014 - 财政年份:2024
- 资助金额:
$ 38.12万 - 项目类别:
Continuing Grant
On-chip nuclear spin qubit platform based on individual erbium-167 ions in silicon photonic nanocavities for quantum repeaters
用于量子中继器的基于硅光子纳米腔中单个铒 167 离子的片上核自旋量子位平台
- 批准号:
23K26580 - 财政年份:2024
- 资助金额:
$ 38.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)