DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments

DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现

基本信息

  • 批准号:
    2219788
  • 负责人:
  • 金额:
    $ 43.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-15 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Non-technical Description: The efficiency of turbine engines used for power and propulsion can be increased by operating at higher temperatures. However, this approach is limited by available materials that can withstand these extreme environments. In this Designing Materials to Revolutionize and Engineer our Future (DMREF) project, the discovery of new materials that enable higher temperature turbine operation will be accelerated through computational methods that are validated with experimental results. Materials to be studied include mixed rare earth silicates for potential high temperature coatings of turbine engine components. Coatings currently under development use a single rare earth element in the silicate. Mixing various combinations of the fifteen rare earth elements in the silicates provides opportunities to discover and optimize desirable coating properties, including low thermal conductivity and high stability in the reactive turbine engine environments. High throughput computational approaches will be used to understand trends in material properties as the composition is varied. The concept of accelerated material discovery will be taught to the university students involved in the project and the application and importance of materials in engines will be demonstrated to elementary students through outreach activities.Technical Description: This research will accelerate new understanding of the interplay of cation complexity on phase stability of high entropy rare earth silicates in extreme environments. The computation-experiment-feedback loop coupled with machine learning and high throughput computation will result in heretofore unrealized linkages of entropy-induced material stability, thermal properties, and corrosion resistance. The project will result in advances in fundamental understanding and discovery of novel materials that can be designed for specific extreme environment applications. The computational approach to materials discovery will utilize AFLOW: high throughput property prediction. These predictions will be tested by characterizing rare earth silicates synthesized via solid state sintering, chemical techniques for improved cation mixing, and gas phase pulsed laser deposition of thin films. Phase stability and chemical disorder will be characterized through use of techniques including X-ray diffraction and transmission electron microscopy. Resulting stability of rare earth silicate mixtures will inform improvements in the computational approach for materials discovery. Additionally, computational approaches will be used to predict phonon transport and thermal properties. These predicted thermal properties will be compared against thermal conductivity measurements as a function of temperature through use of time domain and steady state thermoreflectance, and hot disk techniques. Environmental stability will be experimentally characterized using "steam-jet" testing, an extreme environment laboratory test creating high-temperature, high-velocity, reactive steam representative of the combustion environment. Results from both the thermal and environmental testing will be used to validate and advance the computational approaches and property-based materials discovery.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:用于动力和推进的涡轮发动机的效率可以通过在更高的温度下运行来提高。然而,这种方法受到能够承受这些极端环境的可用材料的限制。 在这个“设计材料以彻底改变和设计我们的未来”(DMREF)项目中,将通过经实验结果验证的计算方法加速发现能够实现更高温度涡轮机运行的新材料。待研究的材料包括用于涡轮发动机部件的潜在高温涂层的混合稀土硅酸盐。目前正在开发的涂料在硅酸盐中使用单一稀土元素。在硅酸盐中混合十五种稀土元素的各种组合提供了发现和优化所需涂层性能的机会,包括反应涡轮发动机环境中的低导热性和高稳定性。 高通量计算方法将用于了解材料特性随成分变化的趋势。将向参与该项目的大学生教授加速材料发现的概念,并将通过外展活动向小学生展示材料在发动机中的应用和重要性。技术描述:这项研究将加速对阳离子相互作用的新理解极端环境下高熵稀土硅酸盐相稳定性的复杂性计算-实验-反馈循环与机器学习和高通量计算相结合,将导致迄今为止尚未实现的熵诱导材料稳定性、热性能和耐腐蚀性之间的联系。该项目将促进对可用于特定极端环境应用的新型材料的基本理解和发现的进展。材料发现的计算方法将利用 AFLOW:高通量特性预测。这些预测将通过表征通过固态烧结合成的稀土硅酸盐、改进阳离子混合的化学技术以及薄膜的气相脉冲激光沉积来测试。 将通过使用 X 射线衍射和透射电子显微镜等技术来表征相稳定性和化学紊乱。由此产生的稀土硅酸盐混合物的稳定性将为材料发现的计算方法的改进提供信息。此外,计算方法将用于预测声子输运和热特性。通过使用时域和稳态热反射以及热盘技术,将这些预测的热特性与作为温度函数的热导率测量值进行比较。环境稳定性将通过“蒸汽喷射”测试进行实验表征,这是一种极端环境实验室测试,可产生代表燃烧环境的高温、高速反应蒸汽。热和环境测试的结果将用于验证和推进计算方法和基于属性的材料发现。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design rules for the thermal and elastic properties of rare-earth disilicates
  • DOI:
    10.1016/j.mtla.2023.101729
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    C. Toher;M. Ridley;K. Tomko;D. Olson;S. Curtarolo;P. Hopkins;E. Opila
  • 通讯作者:
    C. Toher;M. Ridley;K. Tomko;D. Olson;S. Curtarolo;P. Hopkins;E. Opila
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cormac Toher其他文献

Cormac Toher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cormac Toher', 18)}}的其他基金

DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
  • 批准号:
    1921909
  • 财政年份:
    2019
  • 资助金额:
    $ 43.75万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 43.75万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 43.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 43.75万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 43.75万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 43.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了