CPS: Medium: Collaborative Research: Demand Response & Workload Management for Data Centers with Increased Renewable Penetration

CPS:媒介:协作研究:需求响应

基本信息

  • 批准号:
    1739344
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-11-30
  • 项目状态:
    已结题

项目摘要

The confluence of two powerful global trends, (1) the rapid growth of cloud computing and data centers with skyrocketing energy consumption, and (2) the accelerating penetration of renewable energy sources, is creating both severe challenges and tremendous opportunities. The fast growing renewable generation puts forth great operational challenges since they will cause large, frequent, and random fluctuations in supply. Data centers, on the other hand, offer large flexible loads in the grid. Leveraging this flexibility, this project will develop fundamental theories and algorithms for sustainable data centers with a dual goal of improving data center energy efficiency and accelerating the integration of renewables in the grid via data center demand response (DR) and workload management. Specifically, the research findings will shed light on data center demand response while maintaining their performance, which will help data centers to decide how to participate in power market programs. Further, the success of data center demand response will help increase renewable energy integration and reduce the carbon footprint of data centers, contributing to global sustainability. The PIs will leverage fruitful collaboration to eventually bring the research to bear on ongoing industry standardization and development efforts. The PIs teach courses spanning networks, games, smart grid and optimization, and are strongly committed to promoting diversity by providing research opportunities to underrepresented students. Built on the PIs expertise on data centers and the smart grid, this project takes an interdisciplinary approach to develop fundamental theories and algorithms for sustainable data centers. The research tasks are organized under two well-coordinated thrusts, namely agile data center DR and adaptive workload management. The strategies and decisions of data center DR will be made based on the workload management algorithms that balance quality of service and energy efficiency and determine the supply functions. The workload management algorithms will optimize quality of service under the electric load constraints imposed by DR accordingly. This project will make three unique contributions: (1) new market programs with strategic participation of data centers in DR, instead of passive price takers, (2) fundamental understanding of the impacts of power network constraints on data center DR and new distributed algorithms for solving optimal power flow with stochastic renewable supplies, and (3) high-performance dynamic server provisioning and load balancing algorithms for large scale data centers under time-varying and stochastic electric load constraints and on-site renewable generation.
两种强大的全球趋势的汇合,(1)云计算和数据中心的快速增长随着能源消耗而飞涨,以及(2)可再生能源的加速渗透正在构成严重的挑战和巨大的机会。快速增长的可再生能源一代提出了巨大的运营挑战,因为它们会引起供应的巨大,频繁和随机的波动。另一方面,数据中心在网格中提供了较大的柔性负载。为了利用这种灵活性,该项目将开发基本理论和算法,用于可持续数据中心,其双重目标是通过数据中心需求响应(DR)和工作负载管理来提高数据中心的能源效率并加速在网格中的可再生能源集成。 具体而言,研究结果将阐明数据中心的需求响应,同时保持其性能,这将帮助数据中心决定如何参与电力市场计划。此外,数据中心需求响应的成功将有助于增加可再生能源整合并减少数据中心的碳足迹,从而有助于全球可持续性。 PI将利用富有成果的合作来最终将研究促进正在进行的行业标准化和发展工作。 PI教授涵盖网络,游戏,智能电网和优化的课程,并强烈致力于通过为人数不足的学生提供研究机会来促进多样性。 基于数据中心和智能电网的PIS专业知识,该项目采用了跨学科的方法来开发可持续数据中心的基本理论和算法。研究任务是在两个协调的推力下组织的,即敏捷数据中心DR和自适应工作负载管理。数据中心DR的策略和决策将基于平衡服务质量和能源效率并确定供应功能的工作负载管理算法做出。工作负载管理算法将在DR施加的电力负载约束下优化服务质量。该项目将做出三个独特的贡献:(1)新的市场计划,随着数据中心在DR中的战略参与而不是被动价格接受者,(2)对电力网络约束对数据中心的影响的基本了解和新的分布式算法对使用随机可再生用品解决最佳功率流,以及(3)在随时间变化和随机的电力负载约束和现场可再生生成的情况下,大规模数据中心的高性能动态服务器配置和负载平衡算法。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Steady‐state analysis of load balancing with Coxian‐2 distributed service times
使用 Coxian™2 分布式服务时间进行负载平衡的稳态分析
  • DOI:
    10.1002/nav.21986
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Xin;Gong, Kang;Ying, Lei
  • 通讯作者:
    Ying, Lei
Online Stochastic Optimization With Time-Varying Distributions
  • DOI:
    10.1109/tac.2020.2996178
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Xuanyu Cao;Junshan Zhang;H. Vincent Poor
  • 通讯作者:
    Xuanyu Cao;Junshan Zhang;H. Vincent Poor
Learning Parallel Markov Chains over Unreliable Wireless Channels
通过不可靠的无线信道学习并行马尔可夫链
  • DOI:
    10.1109/ciss48834.2020.1570614323
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Weichang;Ying, Lei
  • 通讯作者:
    Ying, Lei
Heavy-Traffic Delay Insensitivity in Connection-Level Models of Data Transfer with Proportionally Fair Bandwidth Sharing
具有按比例公平带宽共享的连接级数据传输模型中的大流量延迟不敏感
A Virtual-Queue-Based Algorithm for Constrained Online Convex Optimization With Applications to Data Center Resource Allocation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Junshan Zhang其他文献

CL-LSG: Continual Learning via Learnable Sparse Growth
CL-LSG:通过可学习的稀疏增长持续学习
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Yang;Sen Lin;Junshan Zhang;Deliang Fan
  • 通讯作者:
    Deliang Fan
A two-phase utility maximization framework for wireless medium access control
无线媒体访问控制的两阶段效用最大化框架
Networked Information Gathering in Stochastic Sensor Networks: Compressive Sensing, Adaptive Network Coding and Robustness
  • DOI:
    10.21236/ada590144
  • 发表时间:
    2013-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junshan Zhang
  • 通讯作者:
    Junshan Zhang
Distributed opportunistic scheduling for ad-hoc communications: an optimal stopping approach
用于临时通信的分布式机会调度:最佳停止方法
  • DOI:
    10.1145/1288107.1288109
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Zheng;Weiyan Ge;Junshan Zhang
  • 通讯作者:
    Junshan Zhang

Junshan Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Junshan Zhang', 18)}}的其他基金

CCSS: Collaborative Research: Quality-Aware Distributed Computation for Wireless Federated Learning: Channel-Aware User Selection, Mini-Batch Size Adaptation, and Scheduling
CCSS:协作研究:无线联邦学习的质量感知分布式计算:通道感知用户选择、小批量大小自适应和调度
  • 批准号:
    2203238
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2203412
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
  • 批准号:
    2130125
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Demand Response & Workload Management for Data Centers with Increased Renewable Penetration
CPS:媒介:协作研究:需求响应
  • 批准号:
    2202126
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
  • 批准号:
    2203239
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Quality-Aware Distributed Computation for Wireless Federated Learning: Channel-Aware User Selection, Mini-Batch Size Adaptation, and Scheduling
CCSS:协作研究:无线联邦学习的质量感知分布式计算:通道感知用户选择、小批量大小自适应和调度
  • 批准号:
    2121222
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2003081
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
TWC SBE: Small: Towards an Economic Foundation of Privacy-Preserving Data Analytics: Incentive Mechanisms and Fundamental Limits
TWC SBE:小型:迈向隐私保护数据分析的经济基础:激励机制和基本限制
  • 批准号:
    1618768
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EARS: Joint Optimization of RF Design and Smartphone Sensing: From Adaptive Sniffing to WAZE-Inspired Spectrum Sharing
EARS:射频设计和智能手机传感的联合优化:从自适应嗅探到受 WAZE 启发的频谱共享
  • 批准号:
    1547294
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
An Exchange Market Approach for Mobile Crowdsensing
移动群智感知的交易市场方法
  • 批准号:
    1408409
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
  • 批准号:
    2333980
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了