CCSS: Collaborative Research: Quality-Aware Distributed Computation for Wireless Federated Learning: Channel-Aware User Selection, Mini-Batch Size Adaptation, and Scheduling

CCSS:协作研究:无线联邦学习的质量感知分布式计算:通道感知用户选择、小批量大小自适应和调度

基本信息

  • 批准号:
    2203238
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

With the explosive growth of ML/AI technologies, there is enormous potential to advance networking technologies to enable distributed ML/AI data analytics over networked systems. This project will explore innovative cross-disciplinary research at the intersections of wireless networking and machine learning, and study wireless federated learning (FL) for achieving collaborative intelligence in wireless networks. It will advance the fundamental understanding of quality-aware dynamic distributed computation and computation-communication co-design for wireless FL. This project will spur a new line of thinking and provide new insights to support various emerging ML/AI applications over wireless networked systems, such as collaborative robotics, multi-user mixed reality, and intelligent control and management of wireless networks. The proposed research will also be integrated with education activities at the PIs' institutions for graduate, undergraduate, and K-12 students via curriculum development, research experiences, and outreach. The PIs will make conscientious effort to recruit minority graduate students.This project will study quality-aware distributed computation for wireless FL, with focuses on channel-aware user selection, communication scheduling, and adaptive mini-batch size design. The proposed research is built on the key observation that the learning accuracy of the trained model in FL depends heavily on dynamic selection of users participating in the learning process and the quality of their local model updates (which is determined by their mini-batch sizes). The quality of local updates can be treated as a design parameter and used as a knob for adaptive control across users and over time based on users' communication and computation costs as well as capabilities. With this insight, the PIs will 1) quantify the impacts of the variances of users' local stochastic gradient updates on learning accuracy over the learning process, for general settings including non-IID data, non-convex loss functions, and asynchronous distributed learning; 2) develop adaptive algorithms that select the participating users and set their mini-batch sizes in each round of the FL algorithm, based on users' channel conditions and the impacts of their local updates on the training loss; 3) jointly design users' mini-batch sizes and schedule their communications to reduce the learning time, by investigating the intricate coupling between computation workloads and communication scheduling. Multi-objective optimization will be used to strike the right balance between learning accuracy and learning cost (or learning time).This project is jointly funded by the Division of Electrical, Communications and Cyber Systems (ECCS), and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着ML/AI技术的爆炸性增长,具有巨大的潜力来推进网络技术,以在网络系统上启用分布式ML/AI数据分析。该项目将在无线网络和机器学习的交集中探索创新的跨学科研究,并研究无线联合学习(FL),以实现无线网络中的协作智能。它将提高对无线FL的质量感知动态分布式计算和计算通信共设计的基本理解。该项目将刺激新的思维方式,并提供新的见解,以支持无线网络系统上各种新兴的ML/AI应用程序,例如协作机器人技术,多用户混合现实以及对无线网络的智能控制和管理。拟议的研究还将通过课程开发,研究经验和宣传来与PIS的研究生,本科生和K-12学生的教育活动相结合。 PI将尽职尽责地招募少数群体研究生。该项目将研究无线FL的质量意识分布式计算,重点关注渠道吸引的用户选择,通信调度和自适应迷你批量设计。拟议的研究基于关键观察,即FL中受过训练的模型的学习准确性在很大程度上取决于参与学习过程的用户的动态选择以及其本地模型更新的质量(这取决于他们的迷你批量尺寸) 。可以将本地更新的质量视为设计参数,并用作跨用户自适应控制的旋钮,并且根据用户的通信和计算成本以及功能。有了这种见解,PIS将1)量化用户本地随机梯度方差对学习过程中学习准确性的影响,以适用于包括非IID数据,非Convex损失函数以及异步分布式学习的一般环境; 2)开发自适应算法,以选择参与的用户,并根据用户的渠道条件以及其本地更新对培训损失的影响; 3)通过调查计算工作负载和通信计划之间的复杂耦合,共同设计用户的迷你批量大小,并安排他们的通信以减少学习时间。多目标优化将用于在学习准确性和学习成本(或学习时间)之间取得适当的平衡。该项目由电气,通信和网络系统(ECC)和既定计划的计划共同资助,以刺激竞争激烈的计划研究(EPSCOR)。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来评估值得支持的。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Model-Based Offline Meta-Reinforcement Learning with Regularization
  • DOI:
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sen Lin;Jialin Wan;Tengyu Xu;Yingbin Liang;Junshan Zhang
  • 通讯作者:
    Sen Lin;Jialin Wan;Tengyu Xu;Yingbin Liang;Junshan Zhang
Adaptive Ensemble Q-learning: Minimizing Estimation Bias via Error Feedback
  • DOI:
    10.48550/arxiv.2306.11918
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hang Wang;Sen Lin;Junshan Zhang
  • 通讯作者:
    Hang Wang;Sen Lin;Junshan Zhang
TRGP: Trust Region Gradient Projection for Continual Learning
  • DOI:
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sen Lin;Li Yang;Deliang Fan;Junshan Zhang
  • 通讯作者:
    Sen Lin;Li Yang;Deliang Fan;Junshan Zhang
HiFlash: Communication-Efficient Hierarchical Federated Learning With Adaptive Staleness Control and Heterogeneity-Aware Client-Edge Association
Communication-Efficient Distributed Learning: An Overview
  • DOI:
    10.1109/jsac.2023.3242710
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    16.4
  • 作者:
    Xuanyu Cao;T. Başar;S. Diggavi;Y. Eldar;K. Letaief;H. Poor;Junshan Zhang
  • 通讯作者:
    Xuanyu Cao;T. Başar;S. Diggavi;Y. Eldar;K. Letaief;H. Poor;Junshan Zhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Junshan Zhang其他文献

CL-LSG: Continual Learning via Learnable Sparse Growth
CL-LSG:通过可学习的稀疏增长持续学习
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Yang;Sen Lin;Junshan Zhang;Deliang Fan
  • 通讯作者:
    Deliang Fan
A two-phase utility maximization framework for wireless medium access control
无线媒体访问控制的两阶段效用最大化框架
Networked Information Gathering in Stochastic Sensor Networks: Compressive Sensing, Adaptive Network Coding and Robustness
  • DOI:
    10.21236/ada590144
  • 发表时间:
    2013-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junshan Zhang
  • 通讯作者:
    Junshan Zhang
Distributed opportunistic scheduling for ad-hoc communications: an optimal stopping approach
用于临时通信的分布式机会调度:最佳停止方法
  • DOI:
    10.1145/1288107.1288109
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Zheng;Weiyan Ge;Junshan Zhang
  • 通讯作者:
    Junshan Zhang

Junshan Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Junshan Zhang', 18)}}的其他基金

Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2203412
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
  • 批准号:
    2130125
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Demand Response & Workload Management for Data Centers with Increased Renewable Penetration
CPS:媒介:协作研究:需求响应
  • 批准号:
    2202126
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
  • 批准号:
    2203239
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Quality-Aware Distributed Computation for Wireless Federated Learning: Channel-Aware User Selection, Mini-Batch Size Adaptation, and Scheduling
CCSS:协作研究:无线联邦学习的质量感知分布式计算:通道感知用户选择、小批量大小自适应和调度
  • 批准号:
    2121222
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2003081
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Demand Response & Workload Management for Data Centers with Increased Renewable Penetration
CPS:媒介:协作研究:需求响应
  • 批准号:
    1739344
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
TWC SBE: Small: Towards an Economic Foundation of Privacy-Preserving Data Analytics: Incentive Mechanisms and Fundamental Limits
TWC SBE:小型:迈向隐私保护数据分析的经济基础:激励机制和基本限制
  • 批准号:
    1618768
  • 财政年份:
    2016
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
EARS: Joint Optimization of RF Design and Smartphone Sensing: From Adaptive Sniffing to WAZE-Inspired Spectrum Sharing
EARS:射频设计和智能手机传感的联合优化:从自适应嗅探到受 WAZE 启发的频谱共享
  • 批准号:
    1547294
  • 财政年份:
    2015
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
An Exchange Market Approach for Mobile Crowdsensing
移动群智感知的交易市场方法
  • 批准号:
    1408409
  • 财政年份:
    2014
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332172
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332173
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
  • 批准号:
    2401415
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
  • 批准号:
    2245607
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319780
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了