CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility

CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用

基本信息

  • 批准号:
    2312092
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

This Cyber-Physical Systems (CPS) project aims at designing theories and algorithms for scalable multi-agent planning and control to support safety-critical autonomous eVTOL aircraft in high-throughput, uncertain and dynamic environments. Urban Air Mobility (UAM) is an emerging air transportation mode in which electrical vertical take-off and landing (eVTOL) aircraft will safely and efficiently transport passengers and cargo within urban areas. Guidance from the White House, the National Academy of Engineering, and the US Congress has encouraged fundamental research in UAM to maintain the US global leadership in this field. The success of UAM will depend on the safe and robust multi-agent autonomy to scale up the operations to high-throughput urban air traffic. Learning-based techniques such as deep reinforcement learning and multi-agent reinforcement learning are developed to support planning and control for these eVTOL vehicles. However, there is a major challenge to provide theoretical safety and robustness guarantees for these learning-based neural network in-the-loop models in multi-agent autonomous UAM applications. In this project, the researchers will collaborate with committed government and industry partners on the use-case-inspired fundamental research, with a focus on promoting safety and reliability of AI, machine learning and autonomy in students with diverse backgrounds. The technical objectives of this project include (1) Safety and Robustness of Single-Agent Reinforcement Learning: in order to address the “safety critical” UAM challenge, the PIs plan the min-max optimization for single agent reinforcement learning to formally build sufficient safety margin, constrained reinforcement learning to formulate safety as physical constraints in state and action spaces, and the novel cautious reinforcement learning that uses variational policy gradient to plan the safest aircraft trajectory with minimum distributional risk; (2) Safety and Robustness of Multi-Agent Reinforcement Learning: in order to address the “heterogeneous agents and scalability” challenge, a novel federated reinforcement learning framework where a central agent coordinates with decentralized safe agents to improve traffic throughput while guaranteeing safety, and a scaling mechanism to accommodate a varying number of decentralized aircraft; (3) Safety and Robustness from Simulations to the Real World: in order to address the “high-dimensionality and environment uncertainty” challenge, the researchers will focus on the agents’ policy robustness under distribution shift and fast adaptation from simulation to the real world. Specifically, value-targeted model learning to incorporate domain knowledge such as the aircraft and environment physics, and a safe adaptation mechanism after the RL model is deployed online for flight testing or execution is planned.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该网络物理系统(CPS)项目旨在设计用于可扩展的多代理计划和控制的理论和算法,以在高通量,不确定和动态的环境中支持安全至关重要的自主EVTOL飞机。城市空气流动性(UAM)是一种新兴的航空运输模式,其中电垂直起飞和降落(EVTOL)飞机将安全有效地在城市地区运输密码和货物。白宫,美国国家工程学院和美国国会的指导鼓励UAM的基础研究,以维持美国在该领域的全球领导。 UAM的成功将取决于安全,强大的多代理自治权,以扩大运营,以扩大到高通量城市空中交通。开发了基于学习的技术,例如深厚的增强学习和多代理增强学习,以支持这些EVTOL车辆的计划和控制。但是,在多代理自动企业UAM应用程序中的环路模型中,为这些基于学习的中性网络提供理论安全性和鲁棒性保证存在一个重大挑战。在该项目中,研究人员将与有忠诚的政府和行业合作伙伴合作就用例启发的基础研究进行合作,重点是促进具有潜水员背景学生的AI,机器学习和自治的安全性和可靠性。该项目的技术目标包括(1)单位加强学习的安全性和鲁棒性:为了解决“安全关键” UAM挑战,PIS计划了对单一剂量强化学习的最小值优化,从分配风险; (2)多代理强化学习的安全性和鲁棒性:为了解决“异质的代理和可伸缩性”挑战,这是一个新型联合加固学习框架,中央代理与分散的安全剂坐在交通范围的情况下,以改善交通吞吐量,并确保安全的安全机制,以适应一个vary量的飞机数量; (3)从模拟到现实世界的安全性和鲁棒性:为了应对“高维和环境不确定性”的挑战,研究人员将重点关注代理商的稳健性,并从分配转移和从模拟到现实世界的快速适应。具体来说,有价值的模型学习以合并诸如飞机和环境物理的领域知识,并计划在网上部署RL模型以进行飞行测试或执行之后的安全适应机制。该奖项反映了NSF的法定任务,并通过评估该基金会的知识绩效和广泛的影响来评估NSF的法定任务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peng Wei其他文献

Towards the Next Generation Airline Revenue Management: A Deep Reinforcement Learning Approach to Seat Inventory Control and Overbooking
迈向下一代航空公司收入管理:用于座位库存控制和超额预订的深度强化学习方法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Shihab;Caleb Logemann;Deep Thomas;Peng Wei
  • 通讯作者:
    Peng Wei
Folate Receptor – Positive Circulating Tumor Cells as a Novel Diagnostic Biomarker in Non – Small Cell Lung Cancer 1
叶酸受体 - 阳性循环肿瘤细胞作为非小细胞肺癌的新型诊断生物标志物 1
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yue Yu;Zhaoli Chen;Jingsi Dong;Peng Wei;Rongjun Hu;Chengcheng Zhou;N. Sun;Mei Luo;Wenjing Yang;Ran Yao;Yibo Gao;Jiagen Li;Guohua Yang;Wei He;Jie He
  • 通讯作者:
    Jie He
Landslide Susceptibility Mapping Using Logistic Regression Analysis along the Jinsha River and Its Tributaries Close to Derong and Deqin County, Southwestern China
中国西南部德荣县和德钦县附近金沙江及其支流沿线逻辑回归分析滑坡敏感性绘图
A compact low impedance angular distribution Blumlein-type pulse forming network
紧凑的低阻抗角分布Blumlein型脉冲形成网络
  • DOI:
    10.1063/5.0025917
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Liu Xiao;Li Song;Peng Wei;Jingming Gao;Hanwu Yang
  • 通讯作者:
    Hanwu Yang
XFEM schemes for level set based structural optimization
基于水平集的结构优化的 XFEM 方案

Peng Wei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peng Wei', 18)}}的其他基金

CAREER: Tunable superconductor materials for quantum information processing using pairs of Majorana zero modes
职业:使用马约拉纳零模式对进行量子信息处理的可调谐超导材料
  • 批准号:
    2046648
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Safe and Scalable Learning-based Control for Autonomous Air Mobility
职业:安全且可扩展的基于学习的自主空中交通控制
  • 批准号:
    2047390
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CRII: CPS: Towards an Intelligent Low-Altitude UAS Traffic Management System
CRII:CPS:迈向智能低空无人机交通管理系统
  • 批准号:
    1565979
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
  • 批准号:
    72374217
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
  • 批准号:
    2414176
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
  • 批准号:
    2401007
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了