Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems

协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析

基本信息

项目摘要

Smart home products have become extremely popular with consumers due to the convenience offered through home automation. In bridging the cyber-physical gap, however, home automation brings a widening of the cyber attack surface of the home. Research towards analyzing and preventing security and safety failures in a smart home faces a fundamental obstacle in practice: the poor characterization of home automation usage. That is, without the knowledge of how users automate their homes, it is difficult to address several critical challenges in designing and analyzing security systems, potentially rendering solutions ineffective in actual deployments. This project aims to bridge this gap, and provide researchers, end-users, and system designers with the means to collect, generate, and analyze realistic examples of home automation usage. This approach builds upon a unique characteristic of emerging smart home platforms: the presence of "user-driven" automation in the form of trigger-action programs that users configure via platform-provided user interfaces. In particular, this project devises methods to capture and model such user-driven home automation to generate statistically significant and useful usage scenarios. The techniques that will be developed during the course of this project will allow researchers and practitioners to analyze various security, safety and privacy properties of the cyber-physical systems that comprise modern smart homes, ultimately leading to deployments of smart home Internet of Things (IoT) devices that are more secure. The project will also produce and disseminate educational materials on best practices for developing secure software with an emphasis on IoT devices, suitable for integration into existing computer literacy courses at all levels of education. In addition, the project will focus on recruiting and retaining computer science students from traditionally underrepresented categories. This project is centered on three specific goals. First, it will develop novel data collection strategies that allow end-users to easily specify routines in a flexible manner, as well as techniques based on Natural language Processing (NLP) for automatically processing and transforming the data into a format suitable for modeling. Second, it will introduce approaches for transforming routines into realistic home automation event sequences, understanding their latent properties and modeling them using well-understood language modeling techniques. Third, it will contextualize the smart home usage models to make predictions that cater to security analyses specifically and develop tools that allow for the inspection of a smart home’s state alongside the execution of predicted event sequences on real products. The techniques and models developed during the course of this project will be validated with industry partners and are expected to become instrumental for developers and researchers to understand security and privacy properties of smart homes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于家庭自动化提供的便利性,智能家居产品在消费者中变得非常受欢迎。然而,在弥合网络物理差距时,家庭自动化带来了房屋的网络攻击表面的扩大。研究和防止智能家居中的安全性和安全性故障的研究面临实践中的根本障碍:家庭自动化使用情况的不良表征。也就是说,在不了解用户如何自动化房屋的情况下,很难在设计和分析安全系统时面临一些关键的挑战,从而使解决方案在实际部署中无效。该项目旨在弥合这一差距,并为研究人员,最终用户和系统设计师提供收集,生成和分析家庭自动化使用量的现实示例的手段。这种方法建立在新兴智能家居平台的独特特征上:以触发动作程序的形式存在“用户驱动”自动化,该程序通过平台提供的用户界面配置了用户配置。特别是,该项目设计了捕获和建模此类用户驱动的家庭自动化的方法,以生成具有统计学意义和有用的用法方案。在该项目过程中将开发的技术将使研究人员和从业人员能够分析完成现代智能家居的网络物理系统的各种安全性,安全性和隐私性,最终导致了更安全的智能家庭互联网(IoT)设备的部署。该项目还将生产并传播有关开发安全软件的最佳实践的教育材料,并重点介绍物联网设备,适合在各个级别的教育中集成到现有的计算机识字课程中。此外,该项目将着重于传统代表性不足类别的招募和保留计算机科学专业的学生。该项目以三个具体目标为中心。首先,它将制定新颖的数据收集策略,使最终用户可以灵活地轻松指定例程,以及基于自然语言处理(NLP)的技术,用于自动处理并将数据转换为适合建模的格式。其次,它将引入将例程转换为现实的家庭自动化事件序列,了解其潜在属性并使用良好理解的语言建模技术对其进行建模的方法。第三,它将将智能房屋使用模型进行环境化,以进行预测,以迎合安全分析并开发工具,并允许在执行真实产品的预测事件序列的情况下检查智能家庭的状态。在该项目过程中开发的技术和模型将通过行业合作伙伴进行验证,并有望使开发人员和研究人员了解智能家居的安全和隐私属性。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来通过评估来通过评估来获得的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Kevin Moran其他文献

Inflation and Growth: A New Keynesian Perspective
通货膨胀与增长:新凯恩斯主义视角
Can you swim? An exploration of measuring real and perceived water competency.
你会游泳吗?
  • DOI:
  • 发表时间:
    2012
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Moran;R. Stallman;P. Kjendlie;D. Dahl;J. Blitvich;Lauren A. Petrass;G. Mcelroy;T. Goya;K. Teramoto;A. Matsui;Shuji Shimongata
    Kevin Moran;R. Stallman;P. Kjendlie;D. Dahl;J. Blitvich;Lauren A. Petrass;G. Mcelroy;T. Goya;K. Teramoto;A. Matsui;Shuji Shimongata
  • 通讯作者:
    Shuji Shimongata
    Shuji Shimongata
Labour Markets, Liquidity, and Monetary Policy Regimes
劳动力市场、流动性和货币政策制度
  • DOI:
    10.1111/j.0008-4085.2004.00008.x
    10.1111/j.0008-4085.2004.00008.x
  • 发表时间:
    2004
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Andolfatto;Scott Hendry;Kevin Moran
    D. Andolfatto;Scott Hendry;Kevin Moran
  • 通讯作者:
    Kevin Moran
    Kevin Moran
Guigle: A GUI Search Engine for Android Apps
Guigle:Android 应用程序的 GUI 搜索引擎
Andror2: A Dataset of Manually-Reproduced Bug Reports for Android apps
Andror2:Android 应用程序手动复制的错误报告数据集
共 26 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往

Kevin Moran的其他基金

Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 38.24万
    $ 38.24万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2311468
    2311468
  • 财政年份:
    2023
  • 资助金额:
    $ 38.24万
    $ 38.24万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
  • 批准号:
    2132285
    2132285
  • 财政年份:
    2022
  • 资助金额:
    $ 38.24万
    $ 38.24万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

代谢酶CPS1调控PD-L1表达重塑肝癌免疫微环境的作用及机制研究
  • 批准号:
    82303340
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
先锋转录因子FOXA2调控CPS1介导尿素循环在急性肝衰竭肝性脑病中的机制研究
  • 批准号:
    82300699
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
CPs/MOFs介导多烯衍生物拓扑光聚合的高立体选择性构建策略研究
  • 批准号:
    22361004
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
尿素循环关键酶CPS1表达异常在肺癌转移中的作用和机制研究
  • 批准号:
    82273390
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
GPER通过“barcode”磷酸化修饰调控β-arrestin/SH3-CPs信号介导肺腺癌EGFR-TKI原发耐药的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420846
    2420846
  • 财政年份:
    2024
  • 资助金额:
    $ 38.24万
    $ 38.24万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 38.24万
    $ 38.24万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 38.24万
    $ 38.24万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420847
    2420847
  • 财政年份:
    2024
  • 资助金额:
    $ 38.24万
    $ 38.24万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
  • 批准号:
    2423130
    2423130
  • 财政年份:
    2024
  • 资助金额:
    $ 38.24万
    $ 38.24万
  • 项目类别:
    Standard Grant
    Standard Grant