喵ID:jt005V免责声明

A Virtual-Queue-Based Algorithm for Constrained Online Convex Optimization With Applications to Data Center Resource Allocation

基本信息

DOI:
10.1109/jstsp.2018.2827302
发表时间:
2018-04
影响因子:
7.5
通讯作者:
Xuanyu Cao;Junshan Zhang;H. Vincent Poor
中科院分区:
工程技术1区
文献类型:
--
作者: Xuanyu Cao;Junshan Zhang;H. Vincent Poor研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

In this paper, online convex optimization (OCO) problems with time-varying objective and constraint functions are studied from the perspective of an agent who takes actions in real time. Information about the current objective and constraint functions is revealed only after the corresponding action is already chosen. Inspired by a fast converging algorithm for time-invariant optimization in the very recent work [1], we develop a novel online algorithm based on virtual queues for constrained OCO. Optimal points of the dynamic optimization problems with full knowledge of the current objective and constraint functions are used as a dynamic benchmark sequence. Upper bounds on the regrets with respect to the dynamic benchmark and the constraint violations are derived for the presented algorithm in terms of the temporal variations of the underlying dynamic optimization problems. It is observed that the proposed algorithm possesses sublinear regret and sublinear constraint violations, as long as the temporal variations of the optimization problems are sublinear, i.e., the objective and constraint functions do not vary too drastically across time. The performance bounds of the proposed algorithm are superior to those of the state-of-the-art OCO method in most scenarios. Besides, different from the saddle point methods widely used in constrained OCO, the stepsize of the proposed algorithm does not rely on the total time horizon, which may be unknown in practice. Finally, the algorithm is applied to a dynamic resource allocation problem in data center networks. Numerical experiments are conducted to corroborate the merit of the developed algorithm and its advantage over the state-of-the-art.
在本文中,从实时采取行动的智能体的角度研究了具有时变目标函数和约束函数的在线凸优化(OCO)问题。关于当前目标函数和约束函数的信息只有在相应的行动已经被选择之后才会被揭示。受近期文献[1]中一种用于时不变优化的快速收敛算法的启发,我们为有约束的OCO开发了一种基于虚拟队列的新型在线算法。将完全了解当前目标函数和约束函数的动态优化问题的最优点用作动态基准序列。根据潜在动态优化问题的时间变化,推导出所提出算法相对于动态基准的遗憾值以及约束违反情况的上界。可以观察到,只要优化问题的时间变化是次线性的,即目标函数和约束函数在时间上不会变化过于剧烈,所提出的算法就具有次线性遗憾值和次线性约束违反情况。在大多数情况下,所提出算法的性能界限优于现有的OCO方法。此外,与在有约束的OCO中广泛使用的鞍点方法不同,所提出算法的步长不依赖于总时间范围,而总时间范围在实际中可能是未知的。最后,将该算法应用于数据中心网络中的动态资源分配问题。进行了数值实验以证实所开发算法的优点及其相对于现有技术的优势。
参考文献(29)
被引文献(33)

数据更新时间:{{ references.updateTime }}

关联基金

Xuanyu Cao;Junshan Zhang;H. Vincent Poor
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓