NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design

NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计

基本信息

  • 批准号:
    2130125
  • 负责人:
  • 金额:
    $ 41.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2022-01-31
  • 项目状态:
    已结题

项目摘要

Recent years have witnessed a tremendous growth in real-time applications in wirelessly networked systems, such as connected cars and multi-user augmented reality (AR). Wireless edge caching is another emerging application requiring high bandwidth, where optimal caching decisions would depend on the cache contents and dynamic user demand profiles. To meet the explosive demand, 5G and Beyond (B5G) technology promises to offer enhanced mobile broadband (eMBB) and ultra-reliable low-latency communications (URLLC) services. Meeting URLLC requirements is very challenging in wireless networks, and requires massive modifications to the current wireless system design. Deadline-aware wireless scheduling of real-time traffic has been a long-standing open problem. This collaborative project makes a paradigm shift to tackle these challenges thus spurring a new line of thinking for QoS guarantee in terms of ultra-low latency and high bandwidth in a variety of IoT applications, including B5G, autonomous driving, augmented reality, smart health and smart city, benefiting both the US and Finland. The proposed research will also be integrated with education activities at the PIs' institutions for graduate, undergraduate, and K-12 students via curriculum development, research experiences, and outreach. This project leverages recent advances on offline reinforcement learning (RL) to study two important problems in B5G, namely 1) deadline-aware wireless scheduling to guarantee low latency and 2) edge caching to achieve high bandwidth content delivery. In Thrust 1, physics-aided offline RL will be devised to train deadline-aware scheduling policies. Specifically, the Actor-Critic (A-C) method will be used for offline training of scheduling policies, consisting of two phases: 1) initialization of Actor structure via behavioral cloning and 2) policy improvement via the physics-aided A-C method. With a good model-based scheduling algorithm as the initial actor structure, the A-C method can be leveraged to yield a better scheduling policy, thanks to its nature of policy improvement. Further, innovative algorithms will be devised to address the outstanding problems in the A-C method, namely overestimation bias and high variance, and Meta-RL will be used for adaptation to distribution shift in nonstationary network dynamics. Thrust 2 focuses on wireless edge caching, an application where the storage capacities at both the network edge and user devices are harnessed to alleviate the need of high-bandwidth communications over long distances. The combinatorial nature of joint communication and caching optimization herein, with the uncertainties of system dynamics, calls for non-trivial design of machine learning algorithms. The PIs will leverage RL to investigate wireless edge caching thoroughly.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,无线网络系统中的实时应用程序出现了巨大的增长,例如联网汽车和多用户增强现实 (AR)。 无线边缘缓存是另一个需要高带宽的新兴应用,其中最佳缓存决策将取决于缓存内容和动态用户需求配置文件。 为了满足爆炸性的需求,5G 及超越 (B5G) 技术有望提供增强型移动宽带 (eMBB) 和超可靠低延迟通信 (URLLC) 服务。 在无线网络中满足 URLLC 要求非常具有挑战性,并且需要对当前无线系统设计进行大量修改。 实时流量的截止时间感知无线调度一直是一个长期存在的开放问题。该合作项目为应对这些挑战做出了范式转变,从而激发了各种物联网应用中超低延迟和高带宽的 QoS 保证的新思路,包括 B5G、自动驾驶、增强现实、智能健康和智慧城市,使美国和芬兰都受益。拟议的研究还将通过课程开发、研究经验和推广与 PI 机构针对研究生、本科生和 K-12 学生的教育活动相结合。该项目利用离线强化学习(RL)的最新进展来研究 B5G 中的两个重要问题,即 1)确保低延迟的截止时间感知无线调度和 2)边缘缓存以实现高带宽内容交付。 在 Thrust 1 中,将设计物理辅助离线强化学习来训练截止日期感知的调度策略。具体来说,Actor-Critic(A-C)方法将用于调度策略的离线训练,包括两个阶段:1)通过行为克隆初始化Actor结构,2)通过物理辅助A-C方法改进策略。以良好的基于​​模型的调度算法作为初始参与者结构,由于其策略改进的性质,可以利用 A-C 方法产生更好的调度策略。此外,将设计创新算法来解决A-C方法中的突出问题,即高估偏差和高方差,并且Meta-RL将用于适应非平稳网络动态中的分布变化。 Thrust 2 重点关注无线边缘缓存,这是一种利用网络边缘和用户设备的存储容量来减轻长距离高带宽通信需求的应用。这里联合通信和缓存优化的组合性质以及系统动力学的不确定性要求机器学习算法的重要设计。 PI 将利用 RL 彻底调查无线边缘缓存。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Warm-Start Actor-Critic: From Approximation Error to Sub-optimality Gap
  • DOI:
    10.48550/arxiv.2306.11271
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hang Wang;Sen Lin;Junshan Zhang
  • 通讯作者:
    Hang Wang;Sen Lin;Junshan Zhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Junshan Zhang其他文献

A two-phase utility maximization framework for wireless medium access control
无线媒体访问控制的两阶段效用最大化框架
CL-LSG: Continual Learning via Learnable Sparse Growth
CL-LSG:通过可学习的稀疏增长持续学习
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Yang;Sen Lin;Junshan Zhang;Deliang Fan
  • 通讯作者:
    Deliang Fan
Networked Information Gathering in Stochastic Sensor Networks: Compressive Sensing, Adaptive Network Coding and Robustness
  • DOI:
    10.21236/ada590144
  • 发表时间:
    2013-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junshan Zhang
  • 通讯作者:
    Junshan Zhang
Low-complexity secure protocols to defend cyber-physical systems against network isolation attacks
用于保护网络物理系统免受网络隔离攻击的低复杂度安全协议

Junshan Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Junshan Zhang', 18)}}的其他基金

CCSS: Collaborative Research: Quality-Aware Distributed Computation for Wireless Federated Learning: Channel-Aware User Selection, Mini-Batch Size Adaptation, and Scheduling
CCSS:协作研究:无线联邦学习的质量感知分布式计算:通道感知用户选择、小批量大小自适应和调度
  • 批准号:
    2203238
  • 财政年份:
    2021
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2203412
  • 财政年份:
    2021
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Demand Response & Workload Management for Data Centers with Increased Renewable Penetration
CPS:媒介:协作研究:需求响应
  • 批准号:
    2202126
  • 财政年份:
    2021
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
  • 批准号:
    2203239
  • 财政年份:
    2021
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Quality-Aware Distributed Computation for Wireless Federated Learning: Channel-Aware User Selection, Mini-Batch Size Adaptation, and Scheduling
CCSS:协作研究:无线联邦学习的质量感知分布式计算:通道感知用户选择、小批量大小自适应和调度
  • 批准号:
    2121222
  • 财政年份:
    2021
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2003081
  • 财政年份:
    2020
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Demand Response & Workload Management for Data Centers with Increased Renewable Penetration
CPS:媒介:协作研究:需求响应
  • 批准号:
    1739344
  • 财政年份:
    2017
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
TWC SBE: Small: Towards an Economic Foundation of Privacy-Preserving Data Analytics: Incentive Mechanisms and Fundamental Limits
TWC SBE:小型:迈向隐私保护数据分析的经济基础:激励机制和基本限制
  • 批准号:
    1618768
  • 财政年份:
    2016
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
EARS: Joint Optimization of RF Design and Smartphone Sensing: From Adaptive Sniffing to WAZE-Inspired Spectrum Sharing
EARS:射频设计和智能手机传感的联合优化:从自适应嗅探到受 WAZE 启发的频谱共享
  • 批准号:
    1547294
  • 财政年份:
    2015
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
An Exchange Market Approach for Mobile Crowdsensing
移动群智感知的交易市场方法
  • 批准号:
    1408409
  • 财政年份:
    2014
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225577
  • 财政年份:
    2023
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
NSF-AoF: CNS Core: Small: CRUISE: A Cross-system Architecture Design for Autonomous Wireless Networks based on Lifelong Machine Learning
NSF-AoF:CNS 核心:小型:CRUISE:基于终身机器学习的自主无线网络的跨系统架构设计
  • 批准号:
    2225427
  • 财政年份:
    2022
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
NSF-AoF: CNS Core: Small: Machine Learning Based Physical Layer and Mobility Management Solutions Towards 6G
NSF-AoF:CNS 核心:小型:面向 6G 的基于机器学习的物理层和移动管理解决方案
  • 批准号:
    2224322
  • 财政年份:
    2022
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
NSF-AoF: CNS Core Small: Lean-NextG: Learning to Network the Edge in Next Generation Wireless Networks
NSF-AoF:CNS Core Small:Lean-NextG:学习下一代无线网络中的边缘网络
  • 批准号:
    2132573
  • 财政年份:
    2021
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了