AF: Medium: The Trace Reconstruction Problem
AF:中:迹线重建问题
基本信息
- 批准号:2106429
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Problems that involve the transmission and recovery of information play an important role in computer science and many related areas. For example, the field of coding theory studies how to cleverly encode a message so that the underlying information can still be recovered even after the message has been subjected to some kind of corruption by noise. While coding theory has been hugely successful and influential, there are many real-world settings in which a noise process affects information "in the wild" where coding schemes cannot be applied. For example, given a DNA sequence that is subject to mutations or deletions, there is no opportunity to encode the sequence using tools of coding theory because it occurs in nature in a way that is not under human control. So, there is a need for techniques that can reconstruct information that has *not* been cleverly encoded, and yet has been corrupted with different types of noise. One particularly challenging type of noise is "deletion noise", meaning that some of the characters of the message are deleted with no indication being given as to where the deletions took place. Fortunately, in many scenarios of this sort it is natural to assume that multiple independent copies of the deletion-plagued data are available; for example, in a biological setting one might have many copies of a given DNA sequence where deletions have affected each copy in a different way. This project will study algorithms for performing reconstruction in scenarios such as the above. Another important goal of this project will be dissemination and outreach activities. Planned activities include new advanced courses on reconstruction problems, training graduate students and postdocs through research collaboration, disseminating research results through seminar talks, survey articles and other publications, and continuing ongoing outreach activities aimed at increasing interest in and awareness of theoretical computer science in a broader population.In more detail, the research team will build on their preliminary results to develop new algorithms for the trace-reconstruction problem, where independent copies of data corrupted by deletions (such a deletion-corrupted data string is known as a "trace") are available and the challenge is to reconstruct the original uncorrupted data. They will analyze a number of different natural variants of this problem, which are obtained by making different assumptions about the nature of the deletion process (low, intermediate, or high deletion rates, correlated versus uncorrelated deletions, and so on); the type of data that is being transmitted (worst-case data, average-case data, etc); and the desiderata for successful reconstruction (perfect reconstruction versus different notions of approximate reconstruction). The research team will also investigate new algorithmic problems related to deletion noise, including more challenging versions of the problem described above in which the reconstruction algorithm is given a mixture of traces from multiple different source strings and the goal is to reconstruct the entire underlying "population" of source strings rather than just a single source string.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
涉及信息传输和恢复的问题在计算机科学和许多相关领域中发挥着重要作用。例如,编码理论领域研究如何巧妙地对消息进行编码,以便即使在消息受到某种噪声损坏后,仍然可以恢复底层信息。虽然编码理论取得了巨大的成功和影响力,但在许多现实世界的环境中,噪声过程会影响“野外”的信息,而编码方案无法应用。 例如,给定一个容易发生突变或缺失的DNA序列,就没有机会使用编码理论工具来编码该序列,因为它在自然界中以不受人类控制的方式发生。 因此,需要一种能够重建尚未被巧妙编码但已被不同类型的噪声破坏的信息的技术。 一种特别具有挑战性的噪声类型是“删除噪声”,这意味着消息的某些字符被删除,但没有给出删除发生在何处的指示。 幸运的是,在许多此类场景中,很自然地假设存在删除问题的数据的多个独立副本可用。例如,在生物环境中,一个给定的 DNA 序列可能有许多拷贝,其中删除以不同的方式影响每个拷贝。 该项目将研究在上述场景中执行重建的算法。 该项目的另一个重要目标是传播和外展活动。计划的活动包括关于重建问题的新高级课程、通过研究合作培训研究生和博士后、通过研讨会演讲、调查文章和其他出版物传播研究成果,以及继续开展旨在提高人们对理论计算机科学的兴趣和认识的外展活动。更详细地说,研究团队将在他们的初步结果的基础上开发用于痕迹重建问题的新算法,其中被删除损坏的数据的独立副本(这样的删除损坏的数据字符串被称为“痕迹”) )可用挑战是重建原始的未损坏的数据。他们将分析该问题的许多不同的自然变体,这些变体是通过对删除过程的性质做出不同的假设而获得的(低、中或高删除率、相关删除与不相关删除等);正在传输的数据类型(最坏情况数据、平均情况数据等);以及成功重建的需求(完美重建与近似重建的不同概念)。 研究团队还将研究与删除噪声相关的新算法问题,包括上述问题的更具挑战性的版本,其中重建算法被赋予来自多个不同源字符串的痕迹的混合,目标是重建整个底层“群体” “源字符串而不仅仅是单个源字符串。该奖项反映了 NSF 的法定使命,并且通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approximate Trace Reconstruction from a Single Trace
从单个迹线进行近似迹线重建
- DOI:
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Chen, Xi;De, Anindya;Lee, Chin Ho;Servedio, Rocco A.;Sinha, Sandip
- 通讯作者:Sinha, Sandip
Subset Sum in Time 2^{n/2}/poly(n)
时间子集和 2^{n/2}/poly(n)
- DOI:10.4230/lipics.approx/random.2023.39
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Chen, Xi;Jin, Yaonan;Randolph, Tim;Servedio, Rocco A.
- 通讯作者:Servedio, Rocco A.
On the complexity of dynamic submodular maximization
关于动态子模最大化的复杂性
- DOI:10.1145/3519935.3519951
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Chen, Xi;Peng, Binghui
- 通讯作者:Peng, Binghui
Computational Hardness of the Hylland-Zeckhauser Scheme
Hylland-Zeckhauser 方案的计算难度
- DOI:10.1137/1.9781611977073.90
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Chen, Thomas;Chen, Xi;Peng, Binghui;Yannakakis, Mihalis
- 通讯作者:Yannakakis, Mihalis
Memory-Query Tradeoffs for Randomized Convex Optimization
随机凸优化的内存查询权衡
- DOI:10.1109/focs57990.2023.00086
- 发表时间:2023-06-21
- 期刊:
- 影响因子:0
- 作者:X. Chen;Binghui Peng
- 通讯作者:Binghui Peng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rocco Servedio其他文献
Theory of Computing
计算理论
- DOI:
10.4086/toc - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana - 通讯作者:
Varun Suriyanarayana
Rocco Servedio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rocco Servedio', 18)}}的其他基金
Collaborative Research: AF: Medium: Continuous Concrete Complexity
合作研究:AF:中:连续混凝土复杂性
- 批准号:
2211238 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
NSF QCIS-FF: Columbia University Computer Science Department Proposal
NSF QCIS-FF:哥伦比亚大学计算机科学系提案
- 批准号:
1926524 - 财政年份:2020
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Student Travel Grant for 2019 Conference on Computational Complexity (CCC)
2019 年计算复杂性会议 (CCC) 学生旅费补助
- 批准号:
1919026 - 财政年份:2019
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
BIGDATA: F: Big Data Analysis via Non-Standard Property Testing
BIGDATA:F:通过非标准属性测试进行大数据分析
- 批准号:
1838154 - 财政年份:2019
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Student Travel Support for CCC 2018
CCC 2018 学生旅行支持
- 批准号:
1822097 - 财政年份:2018
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Boolean Function Analysis Meets Stochastic Design
AF:小型:协作研究:布尔函数分析与随机设计的结合
- 批准号:
1814873 - 财政年份:2018
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
AF: Student Travel to CCC 2017
AF:2017 年 CCC 学生旅行
- 批准号:
1724073 - 财政年份:2017
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Circuit Lower Bounds via Projections
AF:中:协作研究:通过投影确定电路下界
- 批准号:
1563155 - 财政年份:2016
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
AF: Small: Linear and Polynomial Threshold Functions: Structural Analysis and Algorithmic Applications
AF:小:线性和多项式阈值函数:结构分析和算法应用
- 批准号:
1420349 - 财政年份:2014
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
相似国自然基金
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
- 批准号:42377095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SHF: Medium: Collaborative Research: Program Analytics: Using Trace Data for Localization, Explanation and Synthesis
SHF:媒介:协作研究:程序分析:使用跟踪数据进行本地化、解释和综合
- 批准号:
1763674 - 财政年份:2018
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Program Analytics: Using Trace Data for Localization, Explanation and Synthesis
SHF:媒介:协作研究:程序分析:使用跟踪数据进行本地化、解释和综合
- 批准号:
1763814 - 财政年份:2018
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Robust, animal-free cell culture medium for the production of vaccines
用于生产疫苗的稳定、无动物成分的细胞培养基
- 批准号:
8201046 - 财政年份:2011
- 资助金额:
$ 120万 - 项目类别:
NeTS:Medium:Invigorating Empirical Network Research via Mediated Trace Analysis
NeTS:Medium:通过中介跟踪分析激发实证网络研究
- 批准号:
0905631 - 财政年份:2009
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Solventless Sample Preparation Method Using Supercritical or Subcritical Water as the Medium
以超临界或亚临界水为介质的无溶剂样品制备方法
- 批准号:
12640586 - 财政年份:2000
- 资助金额:
$ 120万 - 项目类别:
Grant-in-Aid for Scientific Research (C)