NeTS:Medium:Invigorating Empirical Network Research via Mediated Trace Analysis

NeTS:Medium:通过中介跟踪分析激发实证网络研究

基本信息

  • 批准号:
    0905631
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

Scientific network research relies heavily on sound, empirical analysis of real-world network traffic. It is often not possible to robustly validate a proposed mechanism, enhancement, or new service without understanding how it will interact with real networks and real users. Yet obtaining the necessary raw measurement data?in particular packet traces including payload?can prove exceedingly difficult. Simply put, the lack of public access to current, representative datasets significantly hinders the progress of our scientific field. Not having appropriate traces for a study can stall the most promising research. There have been extensive efforts by the community at large to change the status quo by providing collections of public network traces. However, the community?s major push to encourage institutions to release anonymized data has achieved only very limited successes. The risks involved with any release still outweigh the potential benefits in almost all environments. The lack of significant progress in this direction?despite extensive efforts?is an undeniable indication that the community needs a new approach. Towards this end, the PIs are developing in a systematic fashion a scheme that has been used informally numerous times over two decades of network research: rather than bringing the data to the experimenter, bring the experiment to the data. Past studie have packaged up an analysis for execution by somebody external who had the privileges to access network traffic out of our reach. These people crunched the traffic with our scripts and then manually verified that the output did not leak any sensitive information before passing it on to us. The PIs are establishing such mediated trace analysis as a standard approach to empirical network research. The aim is to formalize the process sufficiently to facilitate researchers tapping into a potentially broad pool of providers willing to mediate access to traces for research studies. Several large-scale network environments have already confirmed to us that they consider this model a feasible approach, and are willing to participate. The main challenge to overcome is the burden the process imposes on trace providers and on the research ?development cycle?. The basic tenet is that it possible to greatly improve many of the tedious mediation steps by devising a systematic framework that accounts for the legitimate concerns of providers while reducing their effort to such a degree that it becomes practical for them to provide mediated trace analysis on a routine basis. The key challenge is to automate the common steps of the mediation process without compromising the core requirement of the trace provider maintaining thorough control over the process. Starting with carefully examining the threats that arise, the PIs are devising a formal framework for trace mediations that will include a computational model specifically tailored to the process? unique requirements, along with a powerful suite of tools to provide extensive support for the different elements of the undertaking.The mediation approach has the potential to broadly improve how scientists tackle network measurement studies?both opening up access to a far greater range of empirical data than is currently viable, and instilling a greater degree of scientific rigor into the process of conducting such research. By making empirical data available to many more teams of researchers than occurs today, this work will significantly broaden efforts within the field.
科学的网络研究很大程度上依赖于对现实世界网络流量的合理、实证分析。如果不了解提议的机制、增强功能或新服务如何与真实网络和真实用户交互,通常不可能对其进行稳健验证。然而,获得必要的原始测量数据(特别是包括有效负载的数据包跟踪)可能非常困难。简而言之,公众无法获取当前的代表性数据集极大地阻碍了我们科学领域的进步。没有适当的研究痕迹可能会阻碍最有前途的研究。整个社区做出了广泛的努力,通过提供公共网络痕迹的收集来改变现状。然而,社区大力鼓励机构发布匿名数据的努力只取得了非常有限的成功。在几乎所有环境中,任何版本所涉及的风险仍然超过潜在的好处。尽管做出了广泛的努力,但在这个方向上缺乏重大进展,这无可否认地表明社区需要一种新的方法。为此,PI 正在以系统的方式开发一种方案,该方案在二十年的网络研究中已被非正式地多次使用:不是将数据带给实验者,而是将实验带到数据中。过去的研究已经打包了一项分析,供有权访问我们无法访问的网络流量的外部人员执行。这些人使用我们的脚本处理流量,然后在将输出传递给我们之前手动验证输出没有泄漏任何敏感信息。 PI 正在建立这种中介跟踪分析作为实证网络研究的标准方法。目的是使该过程充分正规化,以方便研究人员利用愿意调解研究痕迹访问的潜在广泛的提供者群体。几个大型网络环境已经向我们证实,他们认为这种模式是可行的方法,并且愿意参与。需要克服的主要挑战是该过程给跟踪提供者和研究“开发周期”带来的负担。基本原则是,通过设计一个系统框架,考虑到提供者的合理关切,同时减少他们的工作量,使他们能够切实可行地提供中介跟踪分析,从而可以极大地改进许多繁琐的调解步骤。常规基础。关键的挑战是在不影响跟踪提供商保持对流程的彻底控制的核心要求的情况下,实现中介流程的常见步骤的自动化。从仔细检查出现的威胁开始,PI 正在设计一个正式的跟踪中介框架,其中将包括专门针对该过程定制的计算模型?独特的要求,以及一套强大的工具,可为任务的不同要素提供广泛的支持。调解方法有可能广泛改善科学家处理网络测量研究的方式?两者都可以获取更广泛的经验数据比目前可行的方法,并在进行此类研究的过程中注入更高程度的科学严谨性。通过向比现在更多的研究团队提供经验数据,这项工作将显着拓宽该领域的工作范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robin Sommer其他文献

A Lone Wolf No More: Supporting Network Intrusion Detection with Real-Time Intelligence
不再是独狼:通过实时智能支持网络入侵检测
Outside the Closed World: On Using Machine Learning for Network Intrusion Detection
封闭世界之外:利用机器学习进行网络入侵检测
Rethinking Hardware Support for Network Analysis and Intrusion Prevention
重新思考网络分析和入侵防御的硬件支持
  • DOI:
  • 发表时间:
    2006-07-31
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Paxson;K. Asanović;Sarang Dharmapurikar;J. Lockwood;Ruoming Pang;Robin Sommer;N. Weaver
  • 通讯作者:
    N. Weaver
Recent Advances in Intrusion Detection, 13th International Symposium, RAID 2010, Ottawa, Ontario, Canada, September 15-17, 2010. Proceedings
入侵检测最新进展,第 13 届国际研讨会,RAID 2010,加拿大安大略省渥太华,2010 年 9 月 15-17 日。会议记录
On the Reliability of Profile Matching Across Large Online Social Networks
大型在线社交网络中个人资料匹配的可靠性

Robin Sommer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robin Sommer', 18)}}的其他基金

TWC: Option: Medium: Collaborative: Semantic Security Monitoring for Industrial Control Systems
TWC:选项:中:协作:工业控制系统的语义安全监控
  • 批准号:
    1314973
  • 财政年份:
    2013
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
TWC: Phase: Medium: Collaborative Proposal: Understanding and Exploiting Parallelism in Deep Packet Inspection on Concurrent Architectures
TWC:阶段:中:协作提案:理解和利用并发架构深度数据包检查中的并行性
  • 批准号:
    1228792
  • 财政年份:
    2012
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
TC: Medium: Understanding and Managing the Impact of Global Inference on Online Privacy
TC:媒介:理解和管理全局推理对在线隐私的影响
  • 批准号:
    1065240
  • 财政年份:
    2011
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
SDCI Sec Improvement: Enhancing Bro for Operational Network Security Monitoring in Scientific Environments
SDCI Sec 改进:增强 Bro 在科学环境中进行运营网络安全监控
  • 批准号:
    1032889
  • 财政年份:
    2010
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
TC: Small: A High-Performance Abstract Machine for Network Intrusion Detection
TC:Small:用于网络入侵检测的高性能抽象机
  • 批准号:
    0915667
  • 财政年份:
    2009
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
II-EN: High-Performance Network Monitoring Infrastructure For Research in a Large-Scale Operational Environment
II-EN:用于大规模运营环境研究的高性能网络监控基础设施
  • 批准号:
    0855125
  • 财政年份:
    2009
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant

相似国自然基金

基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321103
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321104
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402835
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了