CSR: Small: ARTEMIS: Algorithm-Hardware Co-Design for Efficient Machine Learning Systems

CSR:小型:ARTEMIS:高效机器学习系统的算法硬件协同设计

基本信息

  • 批准号:
    1815780
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

With the increased popularity of machine learning algorithms deployed on a variety of hardware systems, the problem of identifying the best model among numerous possible configurations has drawn significant attention. The problem is compounded by the need to select the right platform to run these applications, under given power or latency constraints. This "hardware wall" forces machine learning service providers to constantly redesign the underlying hardware fabric to satisfy certain constraints. This project develops tools for automatic and efficient co-design of machine learning algorithms and hardware platforms that will result in significant cost and time-to-market reduction for machine learning systems.The project introduces efficient meta-learning for machine learning systems and algorithm-hardware platform co-design. Specifically, the project will develop meta-learning algorithms for the optimization of machine learning models under system hardware constraints and formulate the hardware design of efficient machine learning systems as a machine learning problem itself, that can be effectively solved by meta-learning optimization algorithms. Finally, the project will develop multi-objective algorithms for the co-design of machine learning applications and hardware platforms they need to run on, and exploit domain knowledge from hardware engineering and design schemes to substantially accelerate hardware-aware model optimization.The results of the project seek to change the landscape of modeling, optimization, and design methodologies for efficient machine learning systems. Furthermore, the work aims to have an important educational and mentoring component by potentially changing how engineers are trained in a multidisciplinary fashion for dealing with next generation technological advances in general, and the problem of efficiently and intelligently co-designing machine learning algorithms and the hardware platforms they are running on, in particular. The project will involve a diverse graduate and undergraduate trainee population, while expanding the project's outreach to high-school and middle-school students.The data, code, results, and simulators developed in this project will be made available publicly throughout the duration of the project and for at least four years after the end of the project. The location of the repository is on the website of Carnegie Mellon University's Energy Aware Computing group (www.ece.cmu.edu/~enyac).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着在各种硬件系统上部署的机器学习算法的普及越来越多,在许多可能的配置中识别最佳模型的问题引起了极大的关注。在给定功率或延迟约束下,选择正确的平台来运行这些应用程序的需要,问题更加复杂。这种“硬件墙”迫使机器学习服务提供商不断重新设计基础硬件面料以满足某些约束。该项目开发了用于机器学习算法和硬件平台的自动和高效共同设计的工具,这些工具将导致机器学习系统的大幅成本和市场缩短的成本和时间缩短。该项目介绍了机器学习系统和算法 - 硬件平台的高效元学习。具体而言,该项目将开发用于在系统硬件约束下优化机器学习模型的元学习算法,并将有效的机器学习系统的硬件设计作为机器学习问题本身,可以通过元学习优化算法有效地解决。最后,该项目将开发多目标算法,以针对他们需要运行的机器学习应用程序和硬件平台的共同设计,并利用域知识从硬件工程和设计方案来实质上加速了硬件吸引模型优化。项目的结果旨在改变建模,优化方法和设计机器系统的模型景观。此外,这项工作的目的是通过有可能改变工程师的多学科培训,以应对一般的下一代技术进步,并有效,智能地共同设计机器学习算法及其运行的硬件平台,以应对下一代技术进步的问题。该项目将涉及多样化的毕业生和本科学员人口,同时将项目的宣传扩展到高中生和中学生。该项目中开发的数据,代码,结果和模拟器将在该项目的整个过程中公开提供,并在该项目结束后至少四年。存储库的位置位于卡内基·梅隆大学的能源意识计算集团(www.ece.cmu.edu/~enyac)网站上。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准来通过评估来通过评估来获得支持的。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Designing Adaptive Neural Networks for Energy-Constrained Image Classification
  • DOI:
    10.1145/3240765.3240796
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dimitrios Stamoulis;Ting-Wu Chin;Anand P. Krishnan;Haocheng Fang;S. Sajja;Mitchell Bognar;Diana Marculescu
  • 通讯作者:
    Dimitrios Stamoulis;Ting-Wu Chin;Anand P. Krishnan;Haocheng Fang;S. Sajja;Mitchell Bognar;Diana Marculescu
DeepNVM++: Cross-Layer Modeling and Optimization Framework of Nonvolatile Memories for Deep Learning
Single-Path Mobile AutoML: Efficient ConvNet Design and NAS Hyperparameter Optimization
  • DOI:
    10.1109/jstsp.2020.2971421
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Dimitrios Stamoulis;Ruizhou Ding;Di Wang;Dimitrios Lymberopoulos;B. Priyantha;Jie Liu;Diana Marculescu
  • 通讯作者:
    Dimitrios Stamoulis;Ruizhou Ding;Di Wang;Dimitrios Lymberopoulos;B. Priyantha;Jie Liu;Diana Marculescu
Single-Path NAS: Device-Aware Efficient ConvNet Design
  • DOI:
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dimitrios Stamoulis;Ruizhou Ding;Di Wang;Dimitrios Lymberopoulos;B. Priyantha;Jie Liu-;Diana Marculescu
  • 通讯作者:
    Dimitrios Stamoulis;Ruizhou Ding;Di Wang;Dimitrios Lymberopoulos;B. Priyantha;Jie Liu-;Diana Marculescu
Single-Path NAS: Designing Hardware-Ecient ConvNets in less than 4 Hours
单路径 NAS:在 4 小时内设计硬件高效的卷积网络
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gauri Joshi其他文献

Optimal relay placement for cellular coverage extension
用于扩展蜂窝覆盖范围的最佳中继布局
Synergy via Redundancy: Adaptive Replication Strategies and Fundamental Limits
通过冗余实现协同:自适应复制策略和基本限制
Budget Impact Analysis of a Computer-Delivered Brief Alcohol Intervention in Veterans Affairs (VA) Liver Clinics: A Randomized Controlled Trial
退伍军人事务部 (VA) 肝脏诊所计算机提供的短暂酒精干预的预算影响分析:随机对照试验
  • DOI:
    10.1080/07347324.2020.1760755
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    A. Esmaeili;Wei Yu;Michael A. Cucciare;Ann S Combs;Gauri Joshi;K. Humphreys
  • 通讯作者:
    K. Humphreys
Efficient Replication of Queued Tasks to Reduce Latency in Cloud Systems
有效复制排队任务以减少云系统中的延迟
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gauri Joshi
  • 通讯作者:
    Gauri Joshi
Can Your AI Differentiate Cats from Covid-19? Sample Efficient Uncertainty Estimation for Deep Learning Safety
您的 AI 能否将猫与 Covid-19 区分开来?深度学习安全性的样本有效不确定性估计
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ankur Mallick;Chaitanya Dwivedi;B. Kailkhura;Gauri Joshi;Yong Han
  • 通讯作者:
    Yong Han

Gauri Joshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gauri Joshi', 18)}}的其他基金

CAREER: Frontiers of Distributed Machine Learning with Communication, Computation and Data Constraints
职业:具有通信、计算和数据约束的分布式机器学习前沿
  • 批准号:
    2045694
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: HERMES: On-Device Distributed Machine Learning via Model-Hardware Co-Design
协作研究:SHF:媒介:HERMES:通过模型硬件协同设计实现设备上分布式机器学习
  • 批准号:
    2107024
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CIF: Small: Efficient Sequential Decision-Making and Inference in the Small Data Regime
CIF:小:小数据机制中的高效顺序决策和推理
  • 批准号:
    2007834
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CRII: CIF: Unifying Scheduling and Optimization Techniques to Speed-up Distributed Stochastic Gradient Descent
CRII:CIF:统一调度和优化技术来加速分布式随机梯度下降
  • 批准号:
    1850029
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

SERT-nNOS蛋白相互作用的结构基础及其小分子互作抑制剂的设计、合成及快速抗抑郁活性研究
  • 批准号:
    82373728
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
APOE调控小胶质细胞脂代谢模式在ASD认知和社交损伤中的作用及机制研究
  • 批准号:
    82373597
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
小胶质细胞外泌体通过miR-486抑制神经元铁死亡介导电针修复脊髓损伤的机制研究
  • 批准号:
    82360454
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
CUL4B正反馈调控FOXO3a-FOXM1通路促进非小细胞肺癌放疗抵抗的机制研究
  • 批准号:
    82360584
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
葡萄糖饥饿条件下AMPK-CREB-PPA1信号通路促进非小细胞肺癌细胞增殖的分子机制研究
  • 批准号:
    82360518
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

The role of DNA-PKcs in DNA repair, lymphocyte development, RNA metabolism and tumor suppression
DNA-PKcs 在 DNA 修复、淋巴细胞发育、RNA 代谢和肿瘤抑制中的作用
  • 批准号:
    10539944
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
The role of DNA-PKcs in DNA repair, lymphocyte development, RNA metabolism and tumor suppression
DNA-PKcs 在 DNA 修复、淋巴细胞发育、RNA 代谢和肿瘤抑制中的作用
  • 批准号:
    10651884
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
An Automated Device for High Yield Mesenchymal Stem Cell Extraction
高产间充质干细胞提取自动化设备
  • 批准号:
    9049407
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
Developing an Artemis Nuclease Inhibitor to Potentially Treat Acute Lymphoblastic Leukemia
开发 Artemis 核酸酶抑制剂以潜在治疗急性淋巴细胞白血病
  • 批准号:
    9270425
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
Mechanisms of PARP Inhibitor Resistance in Ovarian Cancer
卵巢癌 PARP 抑制剂耐药机制
  • 批准号:
    9020939
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了