AF: Small: Linear and Polynomial Threshold Functions: Structural Analysis and Algorithmic Applications

AF:小:线性和多项式阈值函数:结构分析和算法应用

基本信息

  • 批准号:
    1420349
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Consider the commonly occurring situation in which a group of participants each casts a yes-or-no vote and a binary decision is made based on which outcome received the majority of the votes.  This simple scenario arises in countless different settings, from elections involving millions of people to small groups of friends deciding where to go for dinner. A generalization of a simple majority vote is a *weighted* majority voting scheme, in which different participants are allocated different numbers of votes. These weighted voting schemes have many interesting mathematical properties and are present across a wide range of areas, from corporate elections in which larger shareholders have more votes to cast to well-studied models of human neurons (which hold that neurons fire essentially according to a weighted vote of their input signals).  Even more generally, one may consider "higher-order" weighted voting schemes, in which each individual voter may belong to multiple "coalitions", each of which has a weighted vote to cast.In this project, the PI will study weighted majority voting schemes (known as "linear threshold functions" or LTFs) and higher-order generalizations of these schemes (known as "polynomial threshold functions" or PTFs) from a mathematical and computational perspective.  The goal of this study is both to obtain a better understanding of these functions, and to develop improved algorithms for working with these functions in a range of contexts.  Specific problems that the PI will address include: (1) Coming up with new ways to decompose "complex" PTFs into "simpler" PTFs, and to approximate complex PTFs using simpler PTFs.  (2) Developing efficient algorithms that can learn unknown PTFs and LTFs from noisy data, and can construct a desired LTF or PTF to meet a set of "design specifications" such as how much influence different individual voters should have over the final outcome.In terms of broader impacts, an improved understanding of LTFs and PTFs, and more efficient algorithms for working with these fundamental functions, may yield benefits in a range of areas (such as theoretical neuroscience, computer science, voting theory, and more) that use such functions. Other important focuses of the project are to train graduate students through research collaboration, disseminate research results through seminar talks, survey articles and other publications, and to continue ongoing outreach activities aimed at increasing interest in theoretical computer science topics in a broader population, including presentations at elementary schools.
考虑一下常见的情况,一组参与者每个人都投赞成票或反对票,并根据获得多数票的结果做出二元决定​这种简单的情况出现在涉及选举的无数不同环境中。数以百万计的人投票给一小群朋友来决定去哪里吃饭。简单多数投票的概括是“加权”多数投票方案,其中不同的参与者被分配不同数量的数字。这些加权投票方案有很多有趣的地方。数学属性并存在于广泛的领域,从大股东拥有更多选票的公司选举到经过深入研究的人类神经元模型(该模型认为神经元基本上根据其输入信号的加权投票而激发)。加权投票方案,其中每个选民可能属于多个“联盟”,每个联盟都有一个加权投票。在这个项目中,PI将研究加权多数投票方案(称为“线性阈值函数”或LTF)和从数学和计算的角度对这些方案(称为“多项式阈值函数”或 PTF)进行高阶概括本研究的目的是为了更好地理解这些函数,并开发用于处理这些函数的改进算法。 PI 将解决的具体问题包括: (1) 提出将“复杂”PTF 分解为“更简单”PTF 的新方法,并使用更简单的方法近似复杂的 PTF。 (2) 开发有效的算法,可以从噪声数据中学习未知的 PTF 和 LTF,并可以构建所需的 LTF 或 PTF 以满足一组“设计规范”,例如不同个体选民对最终结果应有多大影响。就更广泛的影响而言,加深对 LTF 和 PTF 的理解,以及使用这些基本功能的更有效的算法,可能会在一系列领域(例如理论神经科学、计算机科学、投票理论等)产生好处该项目的其他重要重点是通过研究合作培训研究生,通过研讨会演讲、调查文章和其他出版物传播研究成果,并继续开展旨在提高人们对理论计算机科学主题的兴趣的外展活动。更广泛的人群,包括在小学的演讲。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rocco Servedio其他文献

Theory of Computing
计算理论
  • DOI:
    10.4086/toc
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana
  • 通讯作者:
    Varun Suriyanarayana

Rocco Servedio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rocco Servedio', 18)}}的其他基金

Collaborative Research: AF: Medium: Continuous Concrete Complexity
合作研究:AF:中:连续混凝土复杂性
  • 批准号:
    2211238
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
AF: Medium: The Trace Reconstruction Problem
AF:中:迹线重建问题
  • 批准号:
    2106429
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
NSF QCIS-FF: Columbia University Computer Science Department Proposal
NSF QCIS-FF:哥伦比亚大学计算机科学系提案
  • 批准号:
    1926524
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Student Travel Grant for 2019 Conference on Computational Complexity (CCC)
2019 年计算复杂性会议 (CCC) 学生旅费补助
  • 批准号:
    1919026
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
BIGDATA: F: Big Data Analysis via Non-Standard Property Testing
BIGDATA:F:通过非标准属性测试进行大数据分析
  • 批准号:
    1838154
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Student Travel Support for CCC 2018
CCC 2018 学生旅行支持
  • 批准号:
    1822097
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Boolean Function Analysis Meets Stochastic Design
AF:小型:协作研究:布尔函数分析与随机设计的结合
  • 批准号:
    1814873
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
AF: Student Travel to CCC 2017
AF:2017 年 CCC 学生旅行
  • 批准号:
    1724073
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Circuit Lower Bounds via Projections
AF:中:协作研究:通过投影确定电路下界
  • 批准号:
    1563155
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Student Travel to STOC 2013
2013 年 STOC 学生旅行
  • 批准号:
    1319775
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

基于眼-脑跨模态影像构建稀疏贝叶斯线性回归模型预测脑小血管病程度的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
非线性Schrödinger方程的小孤子分解研究
  • 批准号:
    12271080
  • 批准年份:
    2022
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
超导块体强非线性多场耦合断裂特性的小波多分辨封闭分析方法
  • 批准号:
    12172154
  • 批准年份:
    2021
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
月球简单撞击坑非线性退化与近地小天体反演的研究
  • 批准号:
    12173011
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
基于非线性效应的超快超小轨道旋转研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
  • 批准号:
    2327619
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
  • 批准号:
    2327619
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CCF-BSF: AF: Small: Collaborative Research: Practice-Friendly Theory and Algorithms for Linear Regression Problems
CCF-BSF:AF:小型:协作研究:线性回归问题的实用理论和算法
  • 批准号:
    1814041
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CCF-BSF: AF: Small: Collaborative Research: Practice-Friendly Theory and Algorithms for Linear Regression Problems
CCF-BSF:AF:小型:协作研究:线性回归问题的实用理论和算法
  • 批准号:
    1813374
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
AF: Small: Data Stream Algorithms with Application to Linear Algebra
AF:小:数据流算法及其在线性代数中的应用
  • 批准号:
    1815840
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了