TWC SBE: Small: Towards an Economic Foundation of Privacy-Preserving Data Analytics: Incentive Mechanisms and Fundamental Limits
TWC SBE:小型:迈向隐私保护数据分析的经济基础:激励机制和基本限制
基本信息
- 批准号:1618768
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The commoditization of private data has been trending up, as big data analytics is playing a more critical role in advertising, scientific research, etc. It is becoming increasingly difficult to know how data may be used, or to retain control over data about oneself. One common practice of collecting private data is based on "informed consent", where data subjects (individuals) decide whether to report data or not, based upon who is collecting the data, what data is collected, and how the data will be used. This model is becoming untenable, with vague privacy policies and a behind-the-scenes data brokerage market becoming the norm. In practice, there are two fundamental issues that need to be addressed: (i) data subjects have no control of data privacy after transferring private data to the data collector; and (ii) the data collector has sole ability to protect users' private data. This project takes a new, market-based approach: data subjects control their own data privacy by reporting noisy data, and data collectors provide incentives in exchange for receiving more accurate data. This research will enable a paradigm shift from the traditional practice of informed consent for private data collection to a market-based approach where data collectors have only the fidelity of data needed, reducing the potential damage from data breach and giving data subjects greater control over use of their private data.In particular, the problem under consideration is studied in a game-theoretic setting, for general private data models and for a variety of privacy notions, with focus on quantifying two fundamental tradeoffs: the tradeoff between cost and accuracy from the data collector's perspective, and the tradeoff between reward and privacy from a data subject's perspective. The research tasks include (i) devising effective incentive mechanisms for data collectors to collect quality data (controlled by individuals) with minimum cost; and (ii) developing private-preserving reporting algorithms that maximize data subjects' payoffs by taking both payment and privacy loss into account. New theories and mechanisms developed in this project will be integrated into undergraduate and graduate courses.More information about this project can be found at the project homepage http://inlab.lab.asu.edu/data-privacy/
私人数据的商品化一直在趋势,因为大数据分析在广告,科学研究等中起着更为关键的作用。知道如何使用数据或保留对自己的数据的控制越来越困难。 收集私人数据的一种常见做法是基于“知情同意书”,在该数据主体(个人)决定是否报告数据,基于谁在收集数据,收集的数据以及如何使用数据。 这种模式变得站不住脚,具有模糊的隐私政策,并且幕后数据经纪市场成为常态。 实际上,需要解决两个基本问题:(i)将私人数据传输到数据收集器后,数据主体无法控制数据隐私; (ii)数据收集器具有保护用户私人数据的唯一能力。该项目采用一种新的,基于市场的方法:数据主体通过报告嘈杂的数据来控制自己的数据隐私,并且数据收集器提供了激励措施,以换取接收更准确的数据。 这项研究将使范式从传统的知情同意习惯转变为私人数据收集的实践转变为基于市场的方法,在这种方法中,数据收集器仅具有所需的数据保真度,从而减少了数据泄露的潜在损害,并为数据主体提供了更大的控制权。特别是,在游戏理论环境中,针对一般私人数据模型和各种隐私概念中研究了所考虑的问题,重点是量化两个基本的权衡:成本和准确性之间的权衡从数据主体的角度来看,数据收集器的观点以及奖励与隐私之间的权衡。研究任务包括(i)为数据收集者设计有效的激励机制,以收集最低成本的质量数据(由个人控制); (ii)开发私人保护算法,通过考虑付款和隐私损失,从而最大程度地提高了数据主体的收益。该项目中开发的新理论和机制将集成到本科和研究生课程中。有关此项目的更多信息,请参见项目主页http://inlab.lab.asu.edu/data-privacy/
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Value of Privacy: Strategic Data Subjects, Incentive Mechanisms, and Fundamental Limits
隐私的价值:战略数据主体、激励机制和基本限制
- DOI:10.1145/3232863
- 发表时间:2018
- 期刊:
- 影响因子:1.2
- 作者:Wang, Weina;Ying, Lei;Zhang, Junshan
- 通讯作者:Zhang, Junshan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junshan Zhang其他文献
A two-phase utility maximization framework for wireless medium access control
无线媒体访问控制的两阶段效用最大化框架
- DOI:
10.1109/twc.2007.05159 - 发表时间:
2007 - 期刊:
- 影响因子:10.4
- 作者:
D. Zheng;Junshan Zhang - 通讯作者:
Junshan Zhang
Privacy-aware Data Trading(中国计算机学会认定的网络与信息安全领域最高级别的三大A类国际期刊之一,中科院一区TOP,影响因子:7.178)
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:6.8
- 作者:
Shengling Wang;Lina Shi;Junshan Zhang;Xiuzhen Cheng;Jiguo Yu - 通讯作者:
Jiguo Yu
CL-LSG: Continual Learning via Learnable Sparse Growth
CL-LSG:通过可学习的稀疏增长持续学习
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Li Yang;Sen Lin;Junshan Zhang;Deliang Fan - 通讯作者:
Deliang Fan
Networked Information Gathering in Stochastic Sensor Networks: Compressive Sensing, Adaptive Network Coding and Robustness
- DOI:
10.21236/ada590144 - 发表时间:
2013-09 - 期刊:
- 影响因子:0
- 作者:
Junshan Zhang - 通讯作者:
Junshan Zhang
Distributed opportunistic scheduling for ad-hoc communications: an optimal stopping approach
用于临时通信的分布式机会调度:最佳停止方法
- DOI:
10.1145/1288107.1288109 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
D. Zheng;Weiyan Ge;Junshan Zhang - 通讯作者:
Junshan Zhang
Junshan Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junshan Zhang', 18)}}的其他基金
CCSS: Collaborative Research: Quality-Aware Distributed Computation for Wireless Federated Learning: Channel-Aware User Selection, Mini-Batch Size Adaptation, and Scheduling
CCSS:协作研究:无线联邦学习的质量感知分布式计算:通道感知用户选择、小批量大小自适应和调度
- 批准号:
2203238 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2203412 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
- 批准号:
2130125 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Demand Response & Workload Management for Data Centers with Increased Renewable Penetration
CPS:媒介:协作研究:需求响应
- 批准号:
2202126 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
- 批准号:
2203239 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Quality-Aware Distributed Computation for Wireless Federated Learning: Channel-Aware User Selection, Mini-Batch Size Adaptation, and Scheduling
CCSS:协作研究:无线联邦学习的质量感知分布式计算:通道感知用户选择、小批量大小自适应和调度
- 批准号:
2121222 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2003081 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Demand Response & Workload Management for Data Centers with Increased Renewable Penetration
CPS:媒介:协作研究:需求响应
- 批准号:
1739344 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EARS: Joint Optimization of RF Design and Smartphone Sensing: From Adaptive Sniffing to WAZE-Inspired Spectrum Sharing
EARS:射频设计和智能手机传感的联合优化:从自适应嗅探到受 WAZE 启发的频谱共享
- 批准号:
1547294 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
An Exchange Market Approach for Mobile Crowdsensing
移动群智感知的交易市场方法
- 批准号:
1408409 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
转基因水稻中不同反义Sbe基因结构对抑制胚乳支链淀粉合成效果的比较
- 批准号:30300226
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SBE TWC: Small: Collaborative: Pocket Security - Smartphone Cybercrime in the Wild
SBE TWC:小型:协作:袖珍安全 - 智能手机野外网络犯罪
- 批准号:
1903219 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
TWC SBE: Small: Identifying Malicious Insiders through Mouse Cursor Movements
TWC SBE:小:通过鼠标光标移动识别恶意内部人员
- 批准号:
1615696 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
TWC SBE: Small: Helping Teens and Parents Negotiate Online Privacy and Safety
TWC SBE:小型:帮助青少年和家长就在线隐私和安全进行协商
- 批准号:
1618153 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SBE TWC: Small: Collaborative: Pocket Security - Smartphone Cybercrime in the Wild
SBE TWC:小型:协作:袖珍安全 - 智能手机野外网络犯罪
- 批准号:
1617301 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SBE TWC: Small: Collaborative: Pocket Security - Smartphone Cybercrime in the Wild
SBE TWC:小型:协作:袖珍安全 - 智能手机野外网络犯罪
- 批准号:
1619084 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant