Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching

协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图

基本信息

  • 批准号:
    2203412
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

The recent wave of technological advances in machine learning and artificial intelligence has led to widespread applications and public awareness. At the same time, the rapid growth of high-speed wireless network services presents an opportunity for future distributed learning involving a vast number of smart IoT devices. This project targets several technical challenges posed by the limited reliability of wireless connections and computational constraints of the edge nodes in distributed learning systems. Overcoming these challenges is vital to the plethora of computation, communication, and coordination tasks required by distributed machine learning at the network edge. Centered on developing innovative edge learning algorithms over wireless MAC channels under the constraints of computing, power, and bandwidth, this project can significantly impact wireless edge learning in a variety of IoT applications, ranging from transportation, safety, and agriculture, to energy efficiency, e-health, and smart infrastructure. The broader impact of this research will also come through many educational opportunities by providing opportunities in STEM to K-12, women, and underrepresented minority students. This collaborative project will develop an innovative network architecture for distributed learning over wireless multi-access channels. Specifically, the PIs will take a principled approach to develop an integrated wireless edge learning framework, using both gradient-based methods and also very recent advances in gradient-free, zero-order optimization, while taking into account the constraints in computing, power and bandwidth therein, in a holistic manner. The developed methods will be also extended to the setting of distributed online learning and reinforcement learning under wireless MAC. The PIs will focus on optimizing communication-efficient gradient sparsification based local updates that are communicated within the wireless network under bandwidth constraints; and each sender intelligently carries out transmission power allocation based on learning gradient and channel conditions. One important objective is to develop a novel learning-based framework for efficient wireless channel estimation and update to enable effective power control and learning. The project will devise edge learning algorithms that are robust against wireless channel uncertainty. The team of PIs shall comprehensively investigate the impact of the wireless bandwidth and power constraint on both the accuracy and convergence speed of edge learning algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习和人工智能方面的技术进步浪潮导致了广泛的应用和公众意识。同时,高速无线网络服务的快速增长为将来的分布式学习提供了机会,涉及大量智能IoT设备。该项目针对的是,由无线连接的有限可靠性和分布式学习系统中边缘节点的计算限制的有限可靠性所带来的几个技术挑战。克服这些挑战对于网络边缘分布式机器学习所需的大量计算,通信和协调任务至关重要。该项目集中在计算,功率和带宽的限制下,在无线MAC渠道上开发创新的边缘学习算法,该项目可能会严重影响各种物联网应用程序中的无线边缘学习,从运输,安全性和农业到能源效率,到能源效率,到能源效率,到能源效率,到能源效率电子健康和智能基础架构。这项研究的更广泛的影响还将通过许多教育机会,通过向K-12,妇女和代表性不足的少数族裔学生提供机会。 这个协作项目将开发一种创新的网络体系结构,用于通过无线多访问渠道分布式学习。具体而言,PI将采用一种原则的方法来开发一个集成的无线边缘学习框架,同时使用基于梯度的方法以及最新的无梯度,零订单优化的进步,同时考虑到计算,功率和电源和权力的约束其中的带宽,以整体方式。开发的方法还将扩展到无线MAC下的分布式在线学习和增强学习的设置。 PI将着重于优化基于带宽约束的无线网络中传达的基于无线网络中的沟通梯度稀疏的本地更新;每个发件人都根据学习梯度和渠道条件智能地进行传输功率分配。一个重要的目标是开发一个基于学习的新型框架,以进行有效的无线渠道估计并进行更新,以实现有效的功率控制和学习。该项目将设计边缘学习算法,这些算法可抵抗无线通道不确定性。 PI团队应全面研究无线带宽和功率限制对边缘学习算法的准确性和收敛速度的影响。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和广泛的知识分子和广泛的评估来支持的。影响审查标准。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MetaGater: Fast Learning of Conditional Channel Gated Networks via Federated Meta-Learning
Communication-Efficient Distributed Learning: An Overview
  • DOI:
    10.1109/jsac.2023.3242710
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    16.4
  • 作者:
    Xuanyu Cao;T. Başar;S. Diggavi;Y. Eldar;K. Letaief;H. Poor;Junshan Zhang
  • 通讯作者:
    Xuanyu Cao;T. Başar;S. Diggavi;Y. Eldar;K. Letaief;H. Poor;Junshan Zhang
Adaptive Ensemble Q-learning: Minimizing Estimation Bias via Error Feedback
  • DOI:
    10.48550/arxiv.2306.11918
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hang Wang;Sen Lin;Junshan Zhang
  • 通讯作者:
    Hang Wang;Sen Lin;Junshan Zhang
Impact of Social Learning on Privacy-Preserving Data Collection
Guest Editorial Communication-Efficient Distributed Learning Over Networks
客座社论通过网络进行高效沟通的分布式学习
  • DOI:
    10.1109/jsac.2023.3241848
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    16.4
  • 作者:
    Cao, Xuanyu;Başar, Tamer;Diggavi, Suhas;Eldar, Yonina C.;Letaief, Khaled B.;Poor, H. Vincent;Zhang, Junshan
  • 通讯作者:
    Zhang, Junshan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Junshan Zhang其他文献

CL-LSG: Continual Learning via Learnable Sparse Growth
CL-LSG:通过可学习的稀疏增长持续学习
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Yang;Sen Lin;Junshan Zhang;Deliang Fan
  • 通讯作者:
    Deliang Fan
A two-phase utility maximization framework for wireless medium access control
无线媒体访问控制的两阶段效用最大化框架
Networked Information Gathering in Stochastic Sensor Networks: Compressive Sensing, Adaptive Network Coding and Robustness
  • DOI:
    10.21236/ada590144
  • 发表时间:
    2013-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junshan Zhang
  • 通讯作者:
    Junshan Zhang
Distributed opportunistic scheduling for ad-hoc communications: an optimal stopping approach
用于临时通信的分布式机会调度:最佳停止方法
  • DOI:
    10.1145/1288107.1288109
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Zheng;Weiyan Ge;Junshan Zhang
  • 通讯作者:
    Junshan Zhang

Junshan Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Junshan Zhang', 18)}}的其他基金

CCSS: Collaborative Research: Quality-Aware Distributed Computation for Wireless Federated Learning: Channel-Aware User Selection, Mini-Batch Size Adaptation, and Scheduling
CCSS:协作研究:无线联邦学习的质量感知分布式计算:通道感知用户选择、小批量大小自适应和调度
  • 批准号:
    2203238
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
  • 批准号:
    2130125
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Demand Response & Workload Management for Data Centers with Increased Renewable Penetration
CPS:媒介:协作研究:需求响应
  • 批准号:
    2202126
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
  • 批准号:
    2203239
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Quality-Aware Distributed Computation for Wireless Federated Learning: Channel-Aware User Selection, Mini-Batch Size Adaptation, and Scheduling
CCSS:协作研究:无线联邦学习的质量感知分布式计算:通道感知用户选择、小批量大小自适应和调度
  • 批准号:
    2121222
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2003081
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Demand Response & Workload Management for Data Centers with Increased Renewable Penetration
CPS:媒介:协作研究:需求响应
  • 批准号:
    1739344
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
TWC SBE: Small: Towards an Economic Foundation of Privacy-Preserving Data Analytics: Incentive Mechanisms and Fundamental Limits
TWC SBE:小型:迈向隐私保护数据分析的经济基础:激励机制和基本限制
  • 批准号:
    1618768
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EARS: Joint Optimization of RF Design and Smartphone Sensing: From Adaptive Sniffing to WAZE-Inspired Spectrum Sharing
EARS:射频设计和智能手机传感的联合优化:从自适应嗅探到受 WAZE 启发的频谱共享
  • 批准号:
    1547294
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
An Exchange Market Approach for Mobile Crowdsensing
移动群智感知的交易市场方法
  • 批准号:
    1408409
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: MLWiNS:Physical Layer Communication revisited via Deep Learning
合作研究:MLWiNS:通过深度学习重新审视物理层通信
  • 批准号:
    2240916
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
  • 批准号:
    2002821
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
  • 批准号:
    2002874
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2003081
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
  • 批准号:
    2002902
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了