AF: EAGER: Small Space Algorithms and Representations for Graph Optimization Problems

AF:EAGER:图优化问题的小空间算法和表示

基本信息

  • 批准号:
    1552909
  • 负责人:
  • 金额:
    $ 12.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

As very large data sets become more prevalent, there is a rapidly growing interest in design of sublinear algorithms (algorithms whose resource requirements are substantially smaller than the size of the input) and in developing compressed representations of data. The focus of this project is to design sublinear space algorithms and compressed representations for several fundamental graph optimization problems that are intrinsic to many applications in computer science and related disciplines. The proposed research is broadly divided into two parts. The first part of the project considers sublinear space algorithms for graph optimization problems in the streaming model where an input graph is presented as a sequence of edge updates. In particular, this part of the project studies streaming algorithms for the problems of approximating the maximum cut and the maximum matching. In the second part of the proposal, a new class of sketching problems is introduced whereby the goal is to create a compressed representation that allows for arbitrary updates to a pre-specified subset of the input data. The proposed research considers design of updatable compact sketches for problems concerning cuts, flows, and matchings in graphs. Small space algorithms and compressed representations that compute and describe relevant properties of graphs will play an increasingly important role as vast amounts of networked data is being collected and processed in diverse application domains. The research proposed here will go hand-in-hand with educational and student-training initiatives. The PI will integrate topics from proposed research in advanced courses that will provide focused research opportunities for graduate and undergraduate students. The project will also support and train PhD students whose dissertation work will be aligned with the proposed research. The project will also support PI?s on-going work on introducing high-school students to exciting ideas in theoretical computer science.
随着非常大的数据集变得越来越普遍,人们对次线性算法(资源需求远小于输入大小的算法)设计和开发数据压缩表示的兴趣迅速增长。该项目的重点是为计算机科学和相关学科的许多应用所固有的几个基本图优化问题设计次线性空间算法和压缩表示。拟议的研究大致分为两部分。该项目的第一部分考虑了流模型中图优化问题的次线性空间算法,其中输入图呈现为一系列边缘更新。 特别是,该项目的这一部分研究了近似最大切割和最大匹配问题的流算法。在提案的第二部分中,引入了一类新的草图问题,其目标是创建一个压缩表示,允许对输入数据的预先指定的子集进行任意更新。拟议的研究考虑了可更新的紧凑草图的设计,以解决有关图形中的切割、流和匹配的问题。随着在不同应用领域中收集和处理大量网络数据,计算和描述图相关属性的小空间算法和压缩表示将发挥越来越重要的作用。这里提出的研究将与教育和学生培训举措齐头并进。 PI 将把拟议研究的主题整合到高级课程中,为研究生和本科生提供重点研究的机会。该项目还将支持和培训博士生,他们的论文工作将与拟议的研究相一致。该项目还将支持 PI 正在进行的向高中生介绍理论计算机科学中令人兴奋的想法的工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanjeev Khanna其他文献

Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs
子模超图类中保留割断的几乎紧界
Theory of Computing
计算理论
  • DOI:
    10.4086/toc
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana
  • 通讯作者:
    Varun Suriyanarayana
ScholarlyCommons ScholarlyCommons
学术共享 学术共享
On propagation of deletions and annotations through views
关于通过视图传播删除和注释
Maximum Bipartite Matching in ?2+?(1) Time via a Combinatorial Algorithm
通过组合算法在 ?2+?(1) 时间内实现最大二分匹配

Sanjeev Khanna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanjeev Khanna', 18)}}的其他基金

Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
AF: Small: Sublinear Algorithms for Flows, Matchings, and Routing Problems
AF:小:流、匹配和路由问题的次线性算法
  • 批准号:
    2008305
  • 财政年份:
    2020
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
AF: Small: Sublinear Algorithms for Graph Optimization Problems
AF:小:图优化问题的次线性算法
  • 批准号:
    1617851
  • 财政年份:
    2016
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
AF: Small: Cut, Flow, and Matching Problems in Graphs
AF:小:图中的切割、流动和匹配问题
  • 批准号:
    1116961
  • 财政年份:
    2011
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Optimization with Sparse Priors--Algorithms, Indices, and Economic Incentives
III:媒介:协作研究:稀疏先验优化——算法、指数和经济激励
  • 批准号:
    0904314
  • 财政年份:
    2009
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Effectiveness of problem based learning in a materials science course in the engineering curriculum
基于问题的学习在工程课程材料科学课程中的有效性
  • 批准号:
    0836914
  • 财政年份:
    2009
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Cuts, Flows, and Network Routing
剪切、流和网络路由
  • 批准号:
    0635084
  • 财政年份:
    2006
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CT-T: DoS Prevention in Shared Channels
合作研究:CT-T:共享通道中的 DoS 预防
  • 批准号:
    0524269
  • 财政年份:
    2005
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Acquisition of a Nanomechanical Testing Platform to Establish a User Center for Nanomecanical Characterization Materials
收购纳米力学测试平台,建立纳米力学表征材料用户中心
  • 批准号:
    0420859
  • 财政年份:
    2004
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Development and Manufacturing of Highly Damage Resistant Fiber Glass Reinforced Window Panels for Buildings in Hurricane Prone Areas
为飓风多发地区的建筑物开发和制造高抗损伤玻璃纤维增​​强窗板
  • 批准号:
    0196428
  • 财政年份:
    2001
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

渴望及其对农村居民收入差距的影响研究
  • 批准号:
    71903117
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
威胁应对视角下的消费者触摸渴望及其补偿机制研究
  • 批准号:
    71502075
  • 批准年份:
    2015
  • 资助金额:
    17.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Evaluation and implementation of a newly developed olfactometer for the study of sensory ecology in small marine organisms
EAGER:评估和实施新开发的嗅觉计,用于研究小型海洋生物的感官生态学
  • 批准号:
    2310259
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
EAGER: III: Small: Green Granular Neural Networks with Fast FPGA-based Incremental Transfer Learning
EAGER:III:小型:具有基于 FPGA 的快速增量迁移学习的绿色粒度神经网络
  • 批准号:
    2234227
  • 财政年份:
    2022
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
EAGER: Develop Robust Light-Scattering Computational Capability Based on the Method of Separation of Variables in Spheroidal Coordinates for Small-to-Large Spheroids
EAGER:基于从小到大球体的球体坐标中的变量分离方法,开发鲁棒的光散射计算能力
  • 批准号:
    2153239
  • 财政年份:
    2021
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
EAGER: SaTC: CORE: Small: Decentralized Data Assurance by Fair Proof of Work Consensus Federated Ledgers
EAGER:SaTC:核心:小型:通过公平工作证明共识联合账本实现去中心化数据保证
  • 批准号:
    2141468
  • 财政年份:
    2021
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Resarch: EAGER: Mapping small molecules in the root meristem
合作研究:EAGER:绘制根分生组织中的小分子
  • 批准号:
    2028649
  • 财政年份:
    2020
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了