AF: Small: Sublinear Algorithms for Graph Optimization Problems
AF:小:图优化问题的次线性算法
基本信息
- 批准号:1617851
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Very-large scale graphs routinely arise in applications where the data describes pairwise relationships among a set of objects. Some standard examples include the Web graph, social networks, and biological networks. The prevalence of such large data sets has led to a rapidly growing interest in the design of sublinear algorithms, that is, algorithms whose computational resource requirements are substantially smaller than the input size. As vast amounts of networked data is being collected and processed in diverse application domains, sublinear algorithms that accurately compute and describe relevant properties of the data will increasingly play an important role in computing on such data. The goal of this project is to develop sublinear algorithms for several fundamental graph optimization problems. The specific graph problems studied in this project are of both theoretical and practical interest, and are among the most well-studied problems in combinatorial optimization. Additionally, a study of these problems through the lens of sublinear algorithms is likely to yield new insights into computational aspects of these fundamental problems. The research proposed here will go hand-in-hand with educational and student-training initiatives, including mentoring and training of undergraduate and graduate students, and teaching in programs that introduce high-school students to exciting ideas in theoretical computer science.The research focus of this project is broadly divided into three parts. In the first part, the PIs consider streaming algorithms for graph problems where an input graph is revealed as a sequence of edge insertions and deletions. Some representative problems studied in this part include matching and cut problems in graphs. While both cuts and matchings have received considerable attention in the streaming literature, several important questions concerning their computability in the streaming model remain unresolved. In the second part, they consider communication-efficient protocols in a distributed setting when the input graph is partitioned across multiple sites. This model offers a natural abstraction for distributed computation and is closely related to the streaming model. A representative problem here is to understand the communication complexity of the maximum matching problem. The third part of this project investigates a new model for sketching graphs that consist of a (large) static part and a (small) dynamic part. The goal here is to understand if there exist compact sketches for several fundamental graph problems whose size is proportional to the size of the dynamic part of the input graph such that any updates to the dynamic part can be applied directly to the sketch.
超大规模图通常出现在数据描述一组对象之间的成对关系的应用程序中。一些标准示例包括网络图、社交网络和生物网络。如此大的数据集的盛行引起了人们对次线性算法设计的兴趣迅速增长,即计算资源需求远小于输入大小的算法。随着大量网络数据在不同的应用领域被收集和处理,准确计算和描述数据相关属性的次线性算法将在此类数据的计算中日益发挥重要作用。该项目的目标是为几个基本的图优化问题开发次线性算法。该项目研究的具体图问题具有理论和实践意义,是组合优化中研究最深入的问题之一。此外,通过次线性算法对这些问题的研究可能会对这些基本问题的计算方面产生新的见解。这里提出的研究将与教育和学生培训计划齐头并进,包括本科生和研究生的指导和培训,以及向高中生介绍理论计算机科学中令人兴奋的想法的项目教学。该项目大致分为三个部分。在第一部分中,PI 考虑图问题的流算法,其中输入图被显示为边缘插入和删除的序列。这部分研究的一些代表性问题包括图的匹配和切割问题。虽然剪切和匹配在流媒体文献中受到了相当多的关注,但有关它们在流媒体模型中的可计算性的几个重要问题仍未解决。在第二部分中,当输入图跨多个站点分区时,他们考虑分布式设置中的通信高效协议。该模型为分布式计算提供了自然的抽象,并且与流模型密切相关。这里的一个代表性问题是理解最大匹配问题的通信复杂度。该项目的第三部分研究了一种用于绘制图形的新模型,该模型由(大)静态部分和(小)动态部分组成。这里的目标是了解是否存在几个基本图形问题的紧凑草图,其大小与输入图的动态部分的大小成正比,以便对动态部分的任何更新都可以直接应用于草图。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Near-linear Size Hypergraph Cut Sparsifiers
近线性尺寸超图切割稀疏器
- DOI:10.1109/focs46700.2020.00015
- 发表时间:2020-09-10
- 期刊:
- 影响因子:0
- 作者:Yu Chen;S. Khanna;Ansh Nagda
- 通讯作者:Ansh Nagda
Sublinear Time Hypergraph Sparsification via Cut and Edge Sampling Queries
通过剪切和边缘采样查询进行亚线性时间超图稀疏化
- DOI:10.4230/lipics.icalp.2021.53
- 发表时间:2021-06-18
- 期刊:
- 影响因子:0
- 作者:Yu Chen;S. Khanna;Ansh Nagda
- 通讯作者:Ansh Nagda
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjeev Khanna其他文献
Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs
子模超图类中保留割断的几乎紧界
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sanjeev Khanna;Aaron Putterman;Madhu Sudan - 通讯作者:
Madhu Sudan
Theory of Computing
计算理论
- DOI:
10.4086/toc - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana - 通讯作者:
Varun Suriyanarayana
ScholarlyCommons ScholarlyCommons
学术共享 学术共享
- DOI:
10.1109/focs.2004.27 - 发表时间:
2004-10-17 - 期刊:
- 影响因子:0
- 作者:
C. Chekuri;Sanjeev Khanna;F. B. Shepherd - 通讯作者:
F. B. Shepherd
On propagation of deletions and annotations through views
关于通过视图传播删除和注释
- DOI:
10.1145/543613.543633 - 发表时间:
2002-06-03 - 期刊:
- 影响因子:0
- 作者:
P. Buneman;Sanjeev Khanna;W. Tan - 通讯作者:
W. Tan
Maximum Bipartite Matching in ?2+?(1) Time via a Combinatorial Algorithm
通过组合算法在 ?2+?(1) 时间内实现最大二分匹配
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Julia Chuzhoy;Sanjeev Khanna - 通讯作者:
Sanjeev Khanna
Sanjeev Khanna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjeev Khanna', 18)}}的其他基金
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402284 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
AF: Small: Sublinear Algorithms for Flows, Matchings, and Routing Problems
AF:小:流、匹配和路由问题的次线性算法
- 批准号:
2008305 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF: EAGER: Small Space Algorithms and Representations for Graph Optimization Problems
AF:EAGER:图优化问题的小空间算法和表示
- 批准号:
1552909 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF: Small: Cut, Flow, and Matching Problems in Graphs
AF:小:图中的切割、流动和匹配问题
- 批准号:
1116961 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Optimization with Sparse Priors--Algorithms, Indices, and Economic Incentives
III:媒介:协作研究:稀疏先验优化——算法、指数和经济激励
- 批准号:
0904314 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Effectiveness of problem based learning in a materials science course in the engineering curriculum
基于问题的学习在工程课程材料科学课程中的有效性
- 批准号:
0836914 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CT-T: DoS Prevention in Shared Channels
合作研究:CT-T:共享通道中的 DoS 预防
- 批准号:
0524269 - 财政年份:2005
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Acquisition of a Nanomechanical Testing Platform to Establish a User Center for Nanomecanical Characterization Materials
收购纳米力学测试平台,建立纳米力学表征材料用户中心
- 批准号:
0420859 - 财政年份:2004
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Development and Manufacturing of Highly Damage Resistant Fiber Glass Reinforced Window Panels for Buildings in Hurricane Prone Areas
为飓风多发地区的建筑物开发和制造高抗损伤玻璃纤维增强窗板
- 批准号:
0196428 - 财政年份:2001
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
- 批准号:82301557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
- 批准号:82372852
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
- 批准号:82305399
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
- 批准号:82373364
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
AF: Small: Sublinear Algorithms for Flows, Matchings, and Routing Problems
AF:小:流、匹配和路由问题的次线性算法
- 批准号:
2008305 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF: Small: Rehabilitating Constants in Sublinear Algorithms
AF:小:恢复次线性算法中的常数
- 批准号:
2008868 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Dynamic data structures for vectors and graphs in sublinear memory
AF:小:协作研究:亚线性存储器中向量和图形的动态数据结构
- 批准号:
1908821 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF: Small: Sublinear Algorithms for Visual Properties
AF:小:视觉属性的次线性算法
- 批准号:
1909612 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Dynamic data structures for vectors and graphs in sublinear memory
AF:小:协作研究:亚线性存储器中向量和图形的动态数据结构
- 批准号:
1951384 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant