Collaborative Research: CT-T: DoS Prevention in Shared Channels

合作研究:CT-T:共享通道中的 DoS 预防

基本信息

  • 批准号:
    0524269
  • 负责人:
  • 金额:
    $ 32.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-08-15 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

Proposal Number: 0524269Title: DoS Prevention in Shared ChannelsPI: Carl GunterMethods for analyzing and preventing Denial of Service (DoS) threats are of fundamental value for designing robust Internet protocols. Much work has been done to develop pragmatic solutions to protocol-specific DoS threats, but there is a lack of realistic theoretical models for studying DoS and of broad paradigms for designing DoS-resilient protocols. This project develops theoretical models based on a "shared channel model" which describes how adversaries and valid senders share the network bandwidth of attack targets. It exploits this model to design counter-measures based on a paradigm in which asymmetries in protocol workloads that are exploited by adversaries are systematically converted to the advantage of trusted parties. Specific project goals include developing (1) general techniques for obtaining DoS-resilience that can be used to adapt existing protocols or create new ones; (2) ways to automate DoS analysis of protocols to reduce the effort required to confirm practical availability properties theoretically and find unexpected attacks before protocols are deployed; and (3) a unified model of integrity, confidentiality, and availability based on both existing algebraic techniques and new probabilistic techniques.
提案编号:0524269标题:共享通道中的 DoS 预防 PI:Carl Gunter 分析和预防拒绝服务 (DoS) 威胁的方法对于设计强大的 Internet 协议具有根本价值。为了开发针对特定协议的 DoS 威胁的实用解决方案,我们已经做了很多工作,但缺乏用于研究 DoS 的现实理论模型以及用于设计 DoS 弹性协议的广泛范式。该项目开发了基于“共享通道模型”的理论模型,该模型描述了对手和有效发送者如何共享攻击目标的网络带宽。它利用该模型来设计基于范式的对策,在该范式中,对手利用的协议工作负载的不对称性被系统地转化为受信任方的优势。具体的项目目标包括开发 (1) 获得 DoS 弹性的通用技术,可用于调整现有协议或创建新协议; (2) 对协议进行自动化 DoS 分析的方法,以减少在理论上确认实际可用性属性并在部署协议之前发现意外攻击所需的工作量; (3)基于现有代数技术和新概率技术的完整性、机密性和可用性的统一模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanjeev Khanna其他文献

Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs
子模超图类中保留割断的几乎紧界
Theory of Computing
计算理论
  • DOI:
    10.4086/toc
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana
  • 通讯作者:
    Varun Suriyanarayana
ScholarlyCommons ScholarlyCommons
学术共享 学术共享
Maximum Bipartite Matching in ?2+?(1) Time via a Combinatorial Algorithm
通过组合算法在 ?2+?(1) 时间内实现最大二分匹配
On propagation of deletions and annotations through views
关于通过视图传播删除和注释

Sanjeev Khanna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanjeev Khanna', 18)}}的其他基金

Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Continuing Grant
AF: Small: Sublinear Algorithms for Flows, Matchings, and Routing Problems
AF:小:流、匹配和路由问题的次线性算法
  • 批准号:
    2008305
  • 财政年份:
    2020
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
AF: Small: Sublinear Algorithms for Graph Optimization Problems
AF:小:图优化问题的次线性算法
  • 批准号:
    1617851
  • 财政年份:
    2016
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
AF: EAGER: Small Space Algorithms and Representations for Graph Optimization Problems
AF:EAGER:图优化问题的小空间算法和表示
  • 批准号:
    1552909
  • 财政年份:
    2015
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
AF: Small: Cut, Flow, and Matching Problems in Graphs
AF:小:图中的切割、流动和匹配问题
  • 批准号:
    1116961
  • 财政年份:
    2011
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Optimization with Sparse Priors--Algorithms, Indices, and Economic Incentives
III:媒介:协作研究:稀疏先验优化——算法、指数和经济激励
  • 批准号:
    0904314
  • 财政年份:
    2009
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Continuing Grant
Effectiveness of problem based learning in a materials science course in the engineering curriculum
基于问题的学习在工程课程材料科学课程中的有效性
  • 批准号:
    0836914
  • 财政年份:
    2009
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
Cuts, Flows, and Network Routing
剪切、流和网络路由
  • 批准号:
    0635084
  • 财政年份:
    2006
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
Acquisition of a Nanomechanical Testing Platform to Establish a User Center for Nanomecanical Characterization Materials
收购纳米力学测试平台,建立纳米力学表征材料用户中心
  • 批准号:
    0420859
  • 财政年份:
    2004
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
Development and Manufacturing of Highly Damage Resistant Fiber Glass Reinforced Window Panels for Buildings in Hurricane Prone Areas
为飓风多发地区的建筑物开发和制造高抗损伤玻璃纤维增​​强窗板
  • 批准号:
    0196428
  • 财政年份:
    2001
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于联邦学习和多时序CT影像早期智能预测肺结核治疗耐药的研究
  • 批准号:
    82360359
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于相衬CT研究胆汁淤积性肝硬化Glisson系统微脉管形态演变对门脉高压的作用机制
  • 批准号:
    82302189
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型核素探针YNF-(GX1)2结合PET-CT/切伦科夫双模态成像用于引导早期胃癌精准切除的研究
  • 批准号:
    82373117
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多段有限角光子计数能谱CT图像重建方法研究
  • 批准号:
    62371184
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于模型与数据双驱动深度字典网络的稀疏角度CT重建方法研究
  • 批准号:
    62371414
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Districts Helping Districts: Scaling Inclusive CT Pathways
合作研究:地区帮助地区:扩大包容性 CT 路径
  • 批准号:
    2219350
  • 财政年份:
    2022
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Districts Helping Districts: Scaling Inclusive CT Pathways
合作研究:地区帮助地区:扩大包容性 CT 路径
  • 批准号:
    2219351
  • 财政年份:
    2022
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the Multiscale Determinants of Atypical Femoral Fracture using MRI and CT-Based Modeling
合作研究:利用 MRI 和 CT 建模揭示非典型股骨骨折的多尺度决定因素
  • 批准号:
    2026906
  • 财政年份:
    2020
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the Multiscale Determinants of Atypical Femoral Fracture using MRI and CT-Based Modeling
合作研究:利用 MRI 和 CT 建模揭示非典型股骨骨折的多尺度决定因素
  • 批准号:
    2025923
  • 财政年份:
    2020
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Independent Component Analysis Inspired Statistical Neural Networks for 3D CT Scan Based Edge Screening of COVID-19
RAPID:协作研究:独立成分分析启发的统计神经网络,用于基于 3D CT 扫描的 COVID-19 边缘筛查
  • 批准号:
    2027539
  • 财政年份:
    2020
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了