Cuts, Flows, and Network Routing

剪切、流和网络路由

基本信息

  • 批准号:
    0635084
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-15 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to study the computational tractability of fundamental network optimization problems such as disjoint paths, congestion minimization, and multicut. For instance, given a network, and a collection of source-destination pairs, how does one route each source to its destination without causing congestion?What is a smallest set of network links whose failure disconnects each source from its destination? These optimization problems are intimately related to each other via the dual notions of cuts and flows in a network. Taken together, they are among the most widely studied combinatorial optimization problems, and are intrinsic to many applications in computer science. It is no surprise that the study of these problems is connected to major developments in algorithms design, hardness of approximation, and graph theory.The network optimization problems above are NP-hard even in simple settings. This project aims to advance understanding of the polynomial-time approximability of these fundamental optimization problems as well as gain new insights into relationships among multicommodity flows, cuts, and integral routings. This research will focus on new algorithmic techniques as well as new hardness and integrality gap constructions that give insights into the combinatorial structure of these problems. Although these problems are foundational in nature, they are directly related to applications in network design and routing, and resource allocation. Results obtained from this research will be integrated in an advanced course on combinatorial optimization. The project will also help support and train a graduate student, as well as research projects for undergraduates.
该项目的目标是研究基本网络优化问题(例如不相交路径、拥塞最小化和多重切割)的计算易处理性。例如,给定一个网络和一组源-目的地对,如何将每个源路由到其目的地而不引起拥塞?什么是故障导致每个源与其目的地断开连接的最小网络链路集?这些优化问题通过网络中的割和流的双重概念彼此密切相关。总的来说,它们是研究最广泛的组合优化问题之一,并且是计算机科学中许多应用所固有的。毫不奇怪,这些问题的研究与算法设计、近似难度和图论的重大发展相关。即使在简单的设置下,上述网络优化问题也是 NP 困难的。该项目旨在加深对这些基本优化问题的多项式时间逼近性的理解,并对多种商品流、切割和整体路线之间的关系获得新的见解。这项研究将重点关注新的算法技术以及新的硬度和完整性间隙结构,以深入了解这些问题的组合结构。尽管这些问题本质上是基础性的,但它们与网络设计和路由以及资源分配中的应用直接相关。这项研究获得的结果将被纳入组合优化的高级课程中。该项目还将帮助支持和培训研究生以及本科生的研究项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanjeev Khanna其他文献

Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs
子模超图类中保留割断的几乎紧界
Theory of Computing
计算理论
  • DOI:
    10.4086/toc
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana
  • 通讯作者:
    Varun Suriyanarayana
ScholarlyCommons ScholarlyCommons
学术共享 学术共享
On propagation of deletions and annotations through views
关于通过视图传播删除和注释
Maximum Bipartite Matching in ?2+?(1) Time via a Combinatorial Algorithm
通过组合算法在 ?2+?(1) 时间内实现最大二分匹配

Sanjeev Khanna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanjeev Khanna', 18)}}的其他基金

Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
AF: Small: Sublinear Algorithms for Flows, Matchings, and Routing Problems
AF:小:流、匹配和路由问题的次线性算法
  • 批准号:
    2008305
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
AF: Small: Sublinear Algorithms for Graph Optimization Problems
AF:小:图优化问题的次线性算法
  • 批准号:
    1617851
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
AF: EAGER: Small Space Algorithms and Representations for Graph Optimization Problems
AF:EAGER:图优化问题的小空间算法和表示
  • 批准号:
    1552909
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
AF: Small: Cut, Flow, and Matching Problems in Graphs
AF:小:图中的切割、流动和匹配问题
  • 批准号:
    1116961
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Optimization with Sparse Priors--Algorithms, Indices, and Economic Incentives
III:媒介:协作研究:稀疏先验优化——算法、指数和经济激励
  • 批准号:
    0904314
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Effectiveness of problem based learning in a materials science course in the engineering curriculum
基于问题的学习在工程课程材料科学课程中的有效性
  • 批准号:
    0836914
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CT-T: DoS Prevention in Shared Channels
合作研究:CT-T:共享通道中的 DoS 预防
  • 批准号:
    0524269
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Acquisition of a Nanomechanical Testing Platform to Establish a User Center for Nanomecanical Characterization Materials
收购纳米力学测试平台,建立纳米力学表征材料用户中心
  • 批准号:
    0420859
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development and Manufacturing of Highly Damage Resistant Fiber Glass Reinforced Window Panels for Buildings in Hurricane Prone Areas
为飓风多发地区的建筑物开发和制造高抗损伤玻璃纤维增​​强窗板
  • 批准号:
    0196428
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

面向数据中心动态混合流量的网络传输优化关键技术研究
  • 批准号:
    62302472
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
5G网络流量的时空模式、形成机制及其电信节能应用
  • 批准号:
    42371236
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
面向小样本场景的新型网络入侵流量检测方法研究
  • 批准号:
    62302197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向车联网网络流量数据的多方协作学习风险控制机制研究
  • 批准号:
    62373094
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于混合存储的高性能与高扩展网络流量测量框架研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

BRITE Relaunch: Compact Network Flows for Critical Infrastructure Engineering
BRITE 重新启动:关键基础设施工程的紧凑网络流程
  • 批准号:
    2227548
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
BRITE Relaunch: Compact Network Flows for Critical Infrastructure Engineering
BRITE 重新启动:关键基础设施工程的紧凑网络流程
  • 批准号:
    2227548
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRCNS: Waste-clearance flows in the brain measured using physics-informed neural network
CRCNS:使用物理信息神经网络测量大脑中的废物清除流量
  • 批准号:
    10613222
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
CRCNS: Waste-clearance flows in the brain measured using physics-informed neural network
CRCNS:使用物理信息神经网络测量大脑中的废物清除流量
  • 批准号:
    10706594
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Deep Neural Network Machine Learning for Oscillatory Navier-Stokes Flows and Nonlinear Operators, and High Dimensional Fokker-Planck Equations
用于振荡纳维-斯托克斯流和非线性算子以及高维福克-普朗克方程的深度神经网络机器学习
  • 批准号:
    2207449
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了