CRCNS: Waste-clearance flows in the brain measured using physics-informed neural network
CRCNS:使用物理信息神经网络测量大脑中的废物清除流量
基本信息
- 批准号:10706594
- 负责人:
- 金额:$ 32.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAlzheimer&aposs DiseaseArtificial IntelligenceBiologyBlood VesselsBrainBrain imagingBrain regionCephalicCerebrospinal FluidClinicalCommunitiesContrast MediaDataEducational process of instructingEngineeringEquationFailureFutureHealthHigh School StudentHumanImageIntercellular FluidLinkLiquid substanceMagnetic Resonance ImagingMeasurementMeasuresMethodsModalityMorphologic artifactsMusNatureNeurologicNeurosciencesNoisePathologicPathologic ProcessesPhysicsPostdoctoral FellowRehabilitation therapyResearch PersonnelResolutionScienceSeriesSleepSortingSpeedStrokeSystemTechniquesTrainingTraumatic Brain InjuryVariantWorkcontrast enhanceddata-driven modelexperiencefluid flowglymphatic flowglymphatic functionglymphatic systemhigh riskimaging modalityimprovement on sleepin vivoin vivo imaginginventionneural networknoveloutreachparticlepressurespatiotemporaltwo-dimensionaltwo-photonwasting
项目摘要
The brain’s transport system for cerebrospinal and interstitial
fluid, the glymphatic system, was first described in 2012 by the Nedergaard team, operates primarily
during sleep, and has been linked to pathological neurological conditions including Alzheimer’s disease,
traumatic brain injury (TBI), and stroke. Obtaining quantitative measurements of glymphatic fluid velocity
and pressure is crucial to understanding the function, failures, and potential rehabilitation of the
glymphatic system. However, existing techniques for obtaining in vivo glymphatic velocities are limited to
sparse measurements and specific regions, and pressure variation is essentially impossible to measure
in vivo. We propose to quantify glymphatic flows from measurements of tracked particles and contrast
agents using physics-informed neural networks (PINNs), which can infer velocity and pressure from
sparse measurements and have not been used previously in neuroscience. We will adapt PINNs for
three commonly-employed glymphatic imaging modalities: two-photon perivascular space imaging,
transcranial whole-brain imaging, and dynamic contrast-enhanced magnetic resonance imaging (DCEMRI).
For these modalities, each of which can probe different regions and scales of glymphatic flows, we
will adapt the PINNs equations and artificial intelligence hyperparameters, evaluate the sensitivity of the
approach to noise, spatiotemporal resolution, and imaging artifacts using synthetic data, and validate by
comparing velocities inferred by PINNs to velocities from alternative techniques. Using PINNs will allow
us to obtain in vivo velocity and pressure measurements of cerebrospinal fluid in previously unmeasured
regions of the brain. Our collaborative team of neuroscientists, fluid dynamicists, and applied
mathematicians includes the leaders who discovered the glymphatic system and invented PINNs.
Moreover, we have extensive experience with all three imaging modalities and with velocity
measurement (via automated particle tracking and front tracking) in glymphatic flows.
This proposal seeks to reveal mechanisms by which the brain's transport system for cerebrospinal and
interstitial fluid operates. Our novel velocity and pressure measurements of intracranial cerebral spinal
fluid flows may demonstrate how improving sleep, the state during which the glymphatic system
primarily operates, can counteract pathological processes related to glymphatic system failure including
Alzheimer's disease.
大脑的脑脊髓和间质运输系统
液体,即类淋巴系统,由 Nedergaard 团队于 2012 年首次描述,主要运作
睡眠期间,并与包括阿尔茨海默氏病在内的病理性神经系统疾病有关,
获得脑外伤 (TBI) 和中风的定量测量。
压力对于理解系统的功能、故障和潜在的恢复至关重要。
然而,现有的获取体内类淋巴速度的技术仅限于。
稀疏测量和特定区域,并且压力变化基本上无法测量
我们建议通过跟踪粒子和对比度的测量来量化类淋巴流量。
使用物理信息神经网络(PINN)的智能体,可以根据以下信息推断速度和压力
稀疏测量并且之前没有在神经科学中使用过,我们将调整 PINN。
三种常用的类淋巴成像方式:双光子血管周围空间成像,
经颅全脑成像和动态对比增强磁共振成像(DCEMRI)。
对于这些模式,每种模式都可以探测类淋巴流的不同区域和规模,我们
将调整 PINN 方程和人工智能超参数,评估
使用合成数据处理噪声、时空分辨率和成像伪影的方法,并通过以下方式进行验证
将 PINN 推断的速度与使用 PINN 得出的速度进行比较将允许。
我们获得以前未测量过的脑脊液的体内速度和压力测量值
我们的合作团队由神经科学家、流体动力学家和应用专家组成。
数学家包括发现类淋巴系统和发明 PINN 的领导者。
此外,我们在所有三种成像模式和速度方面拥有丰富的经验
类淋巴流中的测量(通过自动粒子跟踪和前沿跟踪)。
该提案旨在揭示大脑的脑脊髓和神经运输系统的机制。
我们对颅内大脑脊髓的速度和压力进行了新颖的测量。
液体流动可能表明如何改善睡眠,即类淋巴系统的状态
主要发挥作用,可以抵消与类淋巴系统衰竭相关的病理过程,包括
阿尔茨海默病。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dysregulation of extracellular potassium distinguishes healthy ageing from neurodegeneration.
细胞外钾的失调将健康衰老与神经变性区分开来。
- DOI:
- 发表时间:2024-05-03
- 期刊:
- 影响因子:0
- 作者:Ding, Fengfei;Sun, Qian;Long, Carter;Rasmussen, Rune Nguyen;Peng, Sisi;Xu, Qiwu;Kang, Ning;Song, Wei;Weikop, Pia;Goldman, Steven A;Nedergaard, Maiken
- 通讯作者:Nedergaard, Maiken
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Douglas H Kelley其他文献
Laboratory model of electrovortex flow with thermal gradients for liquid metal batteries
液态金属电池热梯度电涡流实验室模型
- DOI:
10.1007/s00348-022-03525-3 - 发表时间:
2021-08-03 - 期刊:
- 影响因子:2.4
- 作者:
Jonathan S Cheng;Bitong Wang;I. Mohammad;Jarod M. Forer;Douglas H Kelley - 通讯作者:
Douglas H Kelley
Hydraulic resistance of three-dimensional pial perivascular spaces in the brain
大脑三维软脑膜血管周围空间的液压阻力
- DOI:
10.21203/rs.3.rs-3411983/v1 - 发表时间:
2023-10-11 - 期刊:
- 影响因子:0
- 作者:
K. Boster;Jiatong Sun;Jessica K. Shang;Douglas H Kelley;John H. Thomas - 通讯作者:
John H. Thomas
Douglas H Kelley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Douglas H Kelley', 18)}}的其他基金
Project 1: Modeling brain-state-dependent fluid flow and clearance in mice and humans
项目 1:模拟小鼠和人类大脑状态依赖性液体流动和清除
- 批准号:
10673158 - 财政年份:2022
- 资助金额:
$ 32.88万 - 项目类别:
CRCNS: Waste-clearance flows in the brain measured using physics-informed neural network
CRCNS:使用物理信息神经网络测量大脑中的废物清除流量
- 批准号:
10613222 - 财政年份:2022
- 资助金额:
$ 32.88万 - 项目类别:
Project 1: Modeling brain-state-dependent fluid flow and clearance in mice and humans
项目 1:模拟小鼠和人类大脑状态依赖性液体流动和清除
- 批准号:
10516501 - 财政年份:2022
- 资助金额:
$ 32.88万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 32.88万 - 项目类别:
Mitochondrial dysfunction and tau pathology in Alzheimer's disease
阿尔茨海默病中的线粒体功能障碍和 tau 病理学
- 批准号:
10805120 - 财政年份:2023
- 资助金额:
$ 32.88万 - 项目类别:
Deep learning for prediction of Mild Cognitive Impairment and Dementia of the Alzheimer's type
深度学习预测轻度认知障碍和阿尔茨海默氏症型痴呆
- 批准号:
10662094 - 财政年份:2023
- 资助金额:
$ 32.88万 - 项目类别:
Understanding the mechanistic link between vascular dysfunction and Alzheimers disease-related protein accumulation in the medial temporal lobe
了解血管功能障碍与内侧颞叶阿尔茨海默病相关蛋白积累之间的机制联系
- 批准号:
10736523 - 财政年份:2023
- 资助金额:
$ 32.88万 - 项目类别:
Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia
针对痴呆症患者的超宽带跌倒检测和预测解决方案
- 批准号:
10760690 - 财政年份:2023
- 资助金额:
$ 32.88万 - 项目类别: