Project 1: Modeling brain-state-dependent fluid flow and clearance in mice and humans
项目 1:模拟小鼠和人类大脑状态依赖性液体流动和清除
基本信息
- 批准号:10516501
- 负责人:
- 金额:$ 38.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccountingAcetylcholineAddressAffectAnatomyArteriesAstrocytesBiological AssayBiosensorBlood VesselsBlood VolumeBrainCerebrospinal FluidComplexCyclic AMPDependenceDiffusionDimensionsElectroencephalographyElementsEquationExtracellular SpaceGoalsHumanImageLinkLiquid substanceMeasurableMeasurementMeasuresMetabolicMetabolic Clearance RateMethodsModelingMotionMovementMusNeuropilNorepinephrinePatternPumpResistanceRouteSensoryShapesSignal TransductionSleepSpecific qualifier valueSpeedTestingValidationVariantarteriolebrain parenchymadesignexperienceexperimental studyfluid flowglymphatic clearanceglymphatic functionglymphatic systemhemodynamicshuman datahuman modelin vivoin vivo imagingnetwork modelsneural circuitneuroregulationneurovascular unitparticlepressureprogramsrapid testrelating to nervous systemsensorsimulationsolutespatiotemporaltwo-dimensionalvasomotionwasting
项目摘要
Abstract, Project 1
The overall goal of this proposal is to establish how neural activity drives periarterial CSF pumping and thereby
glymphatic clearance of metabolic waste. Project 1 will address that goal via fluid-dynamical modeling of flow at
the microscale, flow at the macroscale, and brain-wide clearance – all in both mice and humans. Project 1 will
unify the microscale mechanisms and macroscale phenomena measured in Projects 2-4 and deliver predictive,
quantitative, testable models. We postulate that neural circuit activity controls glymphatic function at the
microscale via dynamics of the neurovascular unit, comprised of an arteriole, the perivascular space (PVS)
surrounding it, and the surrounding neuropil. Aim 1 will use detailed fluid-dynamical simulations of the unit, with
domain shapes and boundary conditions taken from measurements, and with vasomotion linked empirically to
norepinephrine (NE) and acetylcholine (ACh) levels, to characterize and quantify microscale CSF flows and
drivers in mice. We postulate that neural activity exerts global control by enlarging and reducing the extracellular
space, and through interactions on the network of PVSs. Aim 2 will build a brain-wide hydraulic network model
to quantify the effects of global drivers and characterize CSF flow across the entire mouse brain. An essential
function of CSF flow in the brain is solute clearance. Aim 3 will build a brain-wide clearance model, taking flows
from Aim 2, independently quantifying the effects of advection and diffusion, and accounting for changes in brain
state. Aim 4 will build models analogous to those of Aims 1-3, but for humans instead of mice, and supplemented
by detailed fluid-dynamical simulations of ventricle flow. This multi-species proposal is designed to reveal how
neural circuits control cerebrospinal fluid movement in the mouse and human brain.
Project 1 will integrate quantitative measurements of neural activity, blood volume, and CSF movement,
from Projects 2-4. The experiments will provide parameters for local and global models, including anatomical
shapes, inlet and outlet boundary conditions, and spatiotemporal hemodynamic changes. Models will reveal
more information than is accessible experimentally and allow causal manipulations that are impossible in vivo,
thereby leading to new hypotheses to be tested. Project 2 will provide PVS shapes and solute efflux
measurements (DB53) as well as astrocytic dynamics (via Ca2+ and cAMP sensors). Project 3 will provide
spatiotemporal hemodynamic patterns and their dependence on neural and neuromodulatory activity (via Ca2+
and biosensors for NE and ACh). Project 4 will provide data from humans: ventricle and PVS shapes,
hemodynamics, and CSF flow in ventricles and PVSs, across spontaneous and sensory-driven neural activity.
摘要,项目 1
该提案的总体目标是确定神经活动如何驱动动脉周围脑脊液泵送,从而
代谢废物的类淋巴系统清除 项目 1 将通过流体动力学模型来实现这一目标。
微观尺度、宏观尺度的流动和全脑清除——所有这些都将在小鼠和人类身上进行。
统一项目 2-4 中测量的微观机制和宏观现象,并提供预测、
我们假设神经回路活动控制着类淋巴功能。
通过神经血管单元的动力学进行微观尺度的研究,神经血管单元由小动脉、血管周围空间 (PVS) 组成
其周围以及周围的神经纤维网 Aim 1 将使用该单元的详细流体动力学模拟。
从测量中获取的域形状和边界条件,并根据经验与血管舒缩相关
去甲肾上腺素 (NE) 和乙酰胆碱 (ACh) 水平,以表征和量化微尺度脑脊液流量和
我们假设神经活动通过扩大和减少细胞外来发挥全局控制作用。
目标2将通过PVS网络上的交互建立一个全脑液压网络模型。
量化全局驱动因素的影响并表征整个小鼠大脑的脑脊液流动。
脑脊液流在大脑中的功能是溶质清除,目标 3 将建立一个全脑清除模型,以流量为基础。
来自目标 2,独立量化平流和扩散的影响,并解释大脑的变化
目标 4 将建立与目标 1-3 类似的模型,但针对的是人类而不是小鼠,并进行了补充。
通过对心室血流进行详细的流体动力学模拟,该多物种提案旨在揭示如何实现这一目标。
神经回路控制小鼠和人脑中的脑脊液运动。
项目 1 将整合神经活动、血容量和脑脊液运动的定量测量,
来自项目 2-4 的实验将为局部和全局模型提供参数,包括解剖学模型。
形状、入口和出口边界条件以及时空血流动力学变化模型将揭示。
比通过实验获得的信息更多,并允许进行体内不可能的因果操作,
导致需要测试的新假设项目 2 将提供 PVS 形状,从而提供溶质流出。
测量(DB53)以及星形细胞动力学(通过 Ca2+ 和 cAMP 传感器)项目 3 将提供。
时空血流动力学模式及其对神经和神经调节活动的依赖性(通过 Ca2+
以及 NE 和 ACh 的生物传感器)项目 4 将提供来自人类的数据:心室和 PVS 形状,
血流动力学、脑脊液在心室和 PVS 中的流动,跨越自发和感觉驱动的神经活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Douglas H Kelley其他文献
Laboratory model of electrovortex flow with thermal gradients for liquid metal batteries
液态金属电池热梯度电涡流实验室模型
- DOI:
10.1007/s00348-022-03525-3 - 发表时间:
2021-08-03 - 期刊:
- 影响因子:2.4
- 作者:
Jonathan S Cheng;Bitong Wang;I. Mohammad;Jarod M. Forer;Douglas H Kelley - 通讯作者:
Douglas H Kelley
Hydraulic resistance of three-dimensional pial perivascular spaces in the brain
大脑三维软脑膜血管周围空间的液压阻力
- DOI:
10.21203/rs.3.rs-3411983/v1 - 发表时间:
2023-10-11 - 期刊:
- 影响因子:0
- 作者:
K. Boster;Jiatong Sun;Jessica K. Shang;Douglas H Kelley;John H. Thomas - 通讯作者:
John H. Thomas
Douglas H Kelley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Douglas H Kelley', 18)}}的其他基金
Project 1: Modeling brain-state-dependent fluid flow and clearance in mice and humans
项目 1:模拟小鼠和人类大脑状态依赖性液体流动和清除
- 批准号:
10673158 - 财政年份:2022
- 资助金额:
$ 38.53万 - 项目类别:
CRCNS: Waste-clearance flows in the brain measured using physics-informed neural network
CRCNS:使用物理信息神经网络测量大脑中的废物清除流量
- 批准号:
10613222 - 财政年份:2022
- 资助金额:
$ 38.53万 - 项目类别:
CRCNS: Waste-clearance flows in the brain measured using physics-informed neural network
CRCNS:使用物理信息神经网络测量大脑中的废物清除流量
- 批准号:
10706594 - 财政年份:2022
- 资助金额:
$ 38.53万 - 项目类别:
相似国自然基金
套期会计有效性的研究:实证检验及影响机制
- 批准号:72302225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
相似海外基金
Project 1: Modeling brain-state-dependent fluid flow and clearance in mice and humans
项目 1:模拟小鼠和人类大脑状态依赖性液体流动和清除
- 批准号:
10673158 - 财政年份:2022
- 资助金额:
$ 38.53万 - 项目类别:
Extension of NEURON simulator for simulation of reaction-diffusion in neurons
用于模拟神经元反应扩散的神经模拟器的扩展
- 批准号:
8073127 - 财政年份:2010
- 资助金额:
$ 38.53万 - 项目类别:
Extension of NEURON simulator for simulation of reaction-diffusion in neurons
用于模拟神经元反应扩散的神经模拟器的扩展
- 批准号:
8444502 - 财政年份:2010
- 资助金额:
$ 38.53万 - 项目类别:
Extension of NEURON simulator for simulation of reaction-diffusion in neurons
用于模拟神经元反应扩散的神经模拟器的扩展
- 批准号:
8260864 - 财政年份:2010
- 资助金额:
$ 38.53万 - 项目类别:
Extension of NEURON simulator for simulation of reaction-diffusion in neurons
用于模拟神经元反应扩散的神经模拟器的扩展
- 批准号:
8816130 - 财政年份:2010
- 资助金额:
$ 38.53万 - 项目类别: