Acquisition of a Nanomechanical Testing Platform to Establish a User Center for Nanomecanical Characterization Materials
收购纳米力学测试平台,建立纳米力学表征材料用户中心
基本信息
- 批准号:0420859
- 负责人:
- 金额:$ 29.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-15 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Nanomechanical Testing Platform addresses the fundamental understanding of the properties of materials at the nanometer length scale. The system includes the Hysitron TriboIndenter as a stand-alone, nanomechanical test instrument that utilizes a fully integrated indenter head and atomic force microscope (AFM) combination. Other accessories integrated with the Triboindenter to support many different nanomechanical characterization techniques for a variety of applications include nanoDMA and modulus mapping module for investigating time dependent properties of materials using a dynamic testing technique; TriboAE module to monitor fracture, delamination and phase transformations that occur under nanoscale contacts using the acoustic waves emitted during the phenomena; Feedback Control Module will allow to operate in closed loop load or displacement control for testing during creep or stress relaxation; Thermal Control Heating/Cooling Stage and a Vacuum Chuck. Nano-mechanical testing in conjunction with nano-scale surface imaging is a powerful way to analyze extremely small volumes of materials or surfaces with a very high resolution. The University of Missouri Columbia has identified Nano-science and Nano-devices as a major research thrust area. Intellectual merit: With these instruments researchers will be able to perform quasi-static testing to study elastic, plastic, and fracture response of both hard and very soft materials during indentation at the nanometer length scale. They will be able to image and quantitatively study surface phenomena such as surface wear by rubbing and scratching. In addition researchers can study time dependent properties of materials over a range of temperatures. It is envisaged that the instrumentation will be used for a wide range of current and future research in areas such as property gradients across composite material interphases and interfaces in welded and joined materials, surface topography in MEMS devices, adhesion and frictional characteristics of electronic devices of micrometer length scale, surface characterization of biological sensors, interfacial properties across layered synthetic and biological materials, mechanical property variations within and across phases in ceramic-polymer composites and investigation of mechanical properties of self-assembled nanostructured materials. Broader Impact: A significant number of graduate and undergraduate students will be exposed to the usage and application of state-of-the-art instrumentation through classroom instruction and research. This experience should sharpen their understanding of materials behavior. This instrumentation will foster interdisciplinary research. The whole range of proposed instruments will form the proposed Nanomechanical Characterization User Center. It should be emphasized that the user facility will be open to faculty and students of all colleges and the medical school on MU campus. The MU campus has made vigorous efforts to recruit students from regional college programs, including those with predominantly Black and Hispanic enrollment. Our group has established collaborative program with Lincoln University (HBCU). The MU is also committed to the recruitment and retention of minority and female students in Science and Engineering.
纳米力学测试平台解决了对纳米长度尺度材料特性的基本理解。该系统包括 Hysitron TriboIndenter 作为独立的纳米力学测试仪器,采用完全集成的压头和原子力显微镜 (AFM) 组合。与 Triboindenter 集成的其他附件可支持多种不同应用的纳米力学表征技术,包括 nanoDMA 和模量映射模块,用于使用动态测试技术研究材料的时间相关特性; TriboAE 模块利用现象期间发出的声波来监测纳米级接触下发生的断裂、分层和相变;反馈控制模块将允许在闭环负载或位移控制下运行,以在蠕变或应力松弛期间进行测试;热控制加热/冷却台和真空吸盘。纳米机械测试与纳米级表面成像相结合是一种以非常高的分辨率分析极小体积材料或表面的强大方法。 密苏里大学哥伦比亚分校已将纳米科学和纳米设备确定为主要研究重点领域。智力价值:利用这些仪器,研究人员将能够进行准静态测试,以研究硬质和极软材料在纳米长度尺度压痕过程中的弹性、塑性和断裂响应。他们将能够对表面现象进行成像和定量研究,例如摩擦和刮擦造成的表面磨损。此外,研究人员还可以研究材料在一定温度范围内随时间变化的特性。预计该仪器将广泛用于当前和未来的研究领域,例如焊接和连接材料中复合材料相间和界面的性能梯度、MEMS 器件的表面形貌、电子器件的粘附和摩擦特性。微米长度尺度、生物传感器的表面表征、层状合成和生物材料的界面特性、陶瓷聚合物复合材料相内和相间的机械特性变化以及自组装纳米结构材料的机械特性研究。更广泛的影响:大量研究生和本科生将通过课堂教学和研究接触到最先进仪器的使用和应用。这种经历应该会加深他们对材料行为的理解。该仪器将促进跨学科研究。提议的全系列仪器将构成提议的纳米机械表征用户中心。需要强调的是,用户设施将向密苏里大学校园内所有学院和医学院的教职员工和学生开放。密苏里大学校园大力招收地区大学项目的学生,包括那些以黑人和西班牙裔学生为主的项目。我们课题组与林肯大学(HBCU)建立了合作项目。密苏里大学还致力于招收和留住科学与工程专业的少数族裔和女学生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjeev Khanna其他文献
Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs
子模超图类中保留割断的几乎紧界
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sanjeev Khanna;Aaron Putterman;Madhu Sudan - 通讯作者:
Madhu Sudan
Theory of Computing
计算理论
- DOI:
10.4086/toc - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana - 通讯作者:
Varun Suriyanarayana
ScholarlyCommons ScholarlyCommons
学术共享 学术共享
- DOI:
10.1109/focs.2004.27 - 发表时间:
2004-10-17 - 期刊:
- 影响因子:0
- 作者:
C. Chekuri;Sanjeev Khanna;F. B. Shepherd - 通讯作者:
F. B. Shepherd
Maximum Bipartite Matching in ?2+?(1) Time via a Combinatorial Algorithm
通过组合算法在 ?2+?(1) 时间内实现最大二分匹配
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Julia Chuzhoy;Sanjeev Khanna - 通讯作者:
Sanjeev Khanna
On propagation of deletions and annotations through views
关于通过视图传播删除和注释
- DOI:
10.1145/543613.543633 - 发表时间:
2002-06-03 - 期刊:
- 影响因子:0
- 作者:
P. Buneman;Sanjeev Khanna;W. Tan - 通讯作者:
W. Tan
Sanjeev Khanna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjeev Khanna', 18)}}的其他基金
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402284 - 财政年份:2024
- 资助金额:
$ 29.39万 - 项目类别:
Continuing Grant
AF: Small: Sublinear Algorithms for Flows, Matchings, and Routing Problems
AF:小:流、匹配和路由问题的次线性算法
- 批准号:
2008305 - 财政年份:2020
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
AF: Small: Sublinear Algorithms for Graph Optimization Problems
AF:小:图优化问题的次线性算法
- 批准号:
1617851 - 财政年份:2016
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
AF: EAGER: Small Space Algorithms and Representations for Graph Optimization Problems
AF:EAGER:图优化问题的小空间算法和表示
- 批准号:
1552909 - 财政年份:2015
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
AF: Small: Cut, Flow, and Matching Problems in Graphs
AF:小:图中的切割、流动和匹配问题
- 批准号:
1116961 - 财政年份:2011
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Optimization with Sparse Priors--Algorithms, Indices, and Economic Incentives
III:媒介:协作研究:稀疏先验优化——算法、指数和经济激励
- 批准号:
0904314 - 财政年份:2009
- 资助金额:
$ 29.39万 - 项目类别:
Continuing Grant
Effectiveness of problem based learning in a materials science course in the engineering curriculum
基于问题的学习在工程课程材料科学课程中的有效性
- 批准号:
0836914 - 财政年份:2009
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
Collaborative Research: CT-T: DoS Prevention in Shared Channels
合作研究:CT-T:共享通道中的 DoS 预防
- 批准号:
0524269 - 财政年份:2005
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
Development and Manufacturing of Highly Damage Resistant Fiber Glass Reinforced Window Panels for Buildings in Hurricane Prone Areas
为飓风多发地区的建筑物开发和制造高抗损伤玻璃纤维增强窗板
- 批准号:
0196428 - 财政年份:2001
- 资助金额:
$ 29.39万 - 项目类别:
Continuing Grant
相似国自然基金
超声介导的机械发光纳米长余辉材料光遗传系统的构建及其用于脑胶质瘤治疗的研究
- 批准号:82372105
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于纳米机械振子动力学调制的拓扑边缘态传输研究
- 批准号:12304566
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
柔性仿生亚纳米通道离子输运及机械门控机理研究
- 批准号:52375563
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
界面机械互锁高分子纳米复合材料的制备及其增强增韧机理研究
- 批准号:52373081
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
仿生机械门控纳米通道的构筑及其离子输运调控的研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
In-situ nanomechanical testing for materials under extreme environments
极端环境下材料的原位纳米力学测试
- 批准号:
LE240100049 - 财政年份:2024
- 资助金额:
$ 29.39万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Nanomechanical testing system
纳米力学测试系统
- 批准号:
522119324 - 财政年份:2023
- 资助金额:
$ 29.39万 - 项目类别:
Major Research Instrumentation
Nanomechanical imaging of protein dynamics via programmable DNA interactions
通过可编程 DNA 相互作用进行蛋白质动力学纳米力学成像
- 批准号:
10217200 - 财政年份:2019
- 资助金额:
$ 29.39万 - 项目类别:
Nanomechanical Testing in Controlled Environments and in the TEM (Nano-TCT)
受控环境和 TEM 中的纳米力学测试 (Nano-TCT)
- 批准号:
EP/S009493/1 - 财政年份:2019
- 资助金额:
$ 29.39万 - 项目类别:
Research Grant
A Nanomechanical Toolkit to Guide Membrane Structure and Dynamics
指导膜结构和动力学的纳米机械工具包
- 批准号:
10378021 - 财政年份:2019
- 资助金额:
$ 29.39万 - 项目类别: