AF: Small: Sublinear Algorithms for Flows, Matchings, and Routing Problems
AF:小:流、匹配和路由问题的次线性算法
基本信息
- 批准号:2008305
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Very large-scale graphs routinely arise in applications where the data describes pairwise relationships among a set of objects. The widespread prevalence of such graphs has led to the emergence of new computational models that allow for efficient processing of information contained in these large networks. Traditional gold standards of computational efficiency, namely, linear storage requirements, linear running time, and linear communication overhead as a function of problem size have given way to sublinear algorithms that use resources that are much smaller than the input size. The goal of this project is to design sublinear algorithms for several fundamental graph problems as well as explore limits of such algorithms. The research activities in this project will go hand-in-hand with educational and student-training initiatives, as well as outreach efforts to engage high-school students and under-represented groups in computer science and related disciplines. The project will also support and train PhD students whose dissertation work will be closely aligned with the proposed research. The project is broadly divided into three parts. The first part considers sublinear space and sublinear time algorithms for the matching problem. The sublinear space algorithms are in the setting of the streaming model of computation where the edges of an underlying graph are revealed as a sequence of edge insertion and deletion updates, and the goal is to compute a near-optimal solution using a small amount of space. The sublinear time algorithms are in the setting of the standard query access model where the graph can be accessed via adjacency-list queries. The second part considers communication-efficient protocols for flows and matchings in the setting where the edges of a graph are arbitrarily distributed among two players, and the goal is to compute an optimal or near-optimal solution with a small amount of communication. The third part considers sublinear time and space algorithms for the well-known traveling salesman problem where the goal is to estimate the cost of the cheapest traveling salesman tour. The problems considered in these three parts are intimately connected to one another and new results for any one of them are likely to have implications for the other.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非常大规模的图通常出现在数据描述一组对象之间的成对关系的应用程序中。此类图的广泛流行导致了新的计算模型的出现,这些模型可以有效地处理这些大型网络中包含的信息。计算效率的传统黄金标准,即线性存储要求、线性运行时间和作为问题大小函数的线性通信开销,已经让位于使用比输入大小小得多的资源的次线性算法。该项目的目标是为几个基本图问题设计次线性算法,并探索此类算法的局限性。该项目的研究活动将与教育和学生培训计划以及让高中生和弱势群体参与计算机科学和相关学科的外展工作齐头并进。该项目还将支持和培训博士生,他们的论文工作将与拟议的研究密切相关。该项目大致分为三个部分。第一部分考虑匹配问题的次线性空间和次线性时间算法。次线性空间算法是在计算流模型的设置中,其中底层图的边缘显示为边缘插入和删除更新的序列,目标是使用少量空间计算接近最优的解决方案。次线性时间算法采用标准查询访问模型的设置,其中可以通过邻接表查询来访问图。第二部分考虑在图的边缘任意分布在两个参与者之间的设置中的流和匹配的通信高效协议,目标是通过少量通信计算最优或接近最优的解决方案。第三部分考虑了著名的旅行商问题的次线性时间和空间算法,其目标是估计最便宜的旅行商旅行的成本。这三个部分所考虑的问题彼此密切相关,其中任何一个的新结果都可能对另一个产生影响。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Polynomial Lower Bound on the Number of Rounds for Parallel Submodular Function Minimization
并行子模函数最小化轮数的多项式下界
- DOI:10.1109/focs52979.2021.00013
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Chakrabarty, Deeparnab;Chen, Yu;Khanna, Sanjeev
- 通讯作者:Khanna, Sanjeev
A Sharp Memory-Regret Trade-off for Multi-Pass Streaming Bandits
多通道流强盗的急剧记忆遗憾权衡
- DOI:
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Agarwal, Arpit;Khanna, Sanjeev;Patil, Prathamesh
- 通讯作者:Patil, Prathamesh
Optimal Bounds for Dominating Set in Graph Streams
图流中支配集的最优界限
- DOI:10.4230/lipics.itcs.2022.93
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Khanna, Sanjeev;Konrad, Christian
- 通讯作者:Konrad, Christian
Hardness of Approximation for Orienteering with Multiple Time Windows
多时间窗定向运动的近似硬度
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Garg, Naveen;Khanna, Sanjeev;Kumar, Amit
- 通讯作者:Kumar, Amit
Nearly Tight Bounds for Discrete Search under Outlier Noise
离群噪声下离散搜索的近乎严格的界限
- DOI:10.1137/1.9781611977066.11
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:De, Anindya;Khanna, Sanjeev;Li, Huan;Nikpey, Hesam
- 通讯作者:Nikpey, Hesam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjeev Khanna其他文献
Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs
子模超图类中保留割断的几乎紧界
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sanjeev Khanna;Aaron Putterman;Madhu Sudan - 通讯作者:
Madhu Sudan
Theory of Computing
计算理论
- DOI:
10.4086/toc - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana - 通讯作者:
Varun Suriyanarayana
ScholarlyCommons ScholarlyCommons
学术共享 学术共享
- DOI:
10.1109/focs.2004.27 - 发表时间:
2004-10-17 - 期刊:
- 影响因子:0
- 作者:
C. Chekuri;Sanjeev Khanna;F. B. Shepherd - 通讯作者:
F. B. Shepherd
On propagation of deletions and annotations through views
关于通过视图传播删除和注释
- DOI:
10.1145/543613.543633 - 发表时间:
2002-06-03 - 期刊:
- 影响因子:0
- 作者:
P. Buneman;Sanjeev Khanna;W. Tan - 通讯作者:
W. Tan
Maximum Bipartite Matching in ?2+?(1) Time via a Combinatorial Algorithm
通过组合算法在 ?2+?(1) 时间内实现最大二分匹配
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Julia Chuzhoy;Sanjeev Khanna - 通讯作者:
Sanjeev Khanna
Sanjeev Khanna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjeev Khanna', 18)}}的其他基金
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402284 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
AF: Small: Sublinear Algorithms for Graph Optimization Problems
AF:小:图优化问题的次线性算法
- 批准号:
1617851 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF: EAGER: Small Space Algorithms and Representations for Graph Optimization Problems
AF:EAGER:图优化问题的小空间算法和表示
- 批准号:
1552909 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF: Small: Cut, Flow, and Matching Problems in Graphs
AF:小:图中的切割、流动和匹配问题
- 批准号:
1116961 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Optimization with Sparse Priors--Algorithms, Indices, and Economic Incentives
III:媒介:协作研究:稀疏先验优化——算法、指数和经济激励
- 批准号:
0904314 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Effectiveness of problem based learning in a materials science course in the engineering curriculum
基于问题的学习在工程课程材料科学课程中的有效性
- 批准号:
0836914 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CT-T: DoS Prevention in Shared Channels
合作研究:CT-T:共享通道中的 DoS 预防
- 批准号:
0524269 - 财政年份:2005
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Acquisition of a Nanomechanical Testing Platform to Establish a User Center for Nanomecanical Characterization Materials
收购纳米力学测试平台,建立纳米力学表征材料用户中心
- 批准号:
0420859 - 财政年份:2004
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Development and Manufacturing of Highly Damage Resistant Fiber Glass Reinforced Window Panels for Buildings in Hurricane Prone Areas
为飓风多发地区的建筑物开发和制造高抗损伤玻璃纤维增强窗板
- 批准号:
0196428 - 财政年份:2001
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
- 批准号:82371229
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
- 批准号:82301369
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异常激活的小胶质细胞通过上调CTSS抑制微血管特异性因子MFSD2A表达促进1型糖尿病视网膜病变的免疫学机制研究
- 批准号:82370827
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
- 批准号:82371419
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
- 批准号:82303616
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
AF: Small: Rehabilitating Constants in Sublinear Algorithms
AF:小:恢复次线性算法中的常数
- 批准号:
2008868 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Dynamic data structures for vectors and graphs in sublinear memory
AF:小:协作研究:亚线性存储器中向量和图形的动态数据结构
- 批准号:
1908821 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF: Small: Sublinear Algorithms for Visual Properties
AF:小:视觉属性的次线性算法
- 批准号:
1909612 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Dynamic data structures for vectors and graphs in sublinear memory
AF:小:协作研究:亚线性存储器中向量和图形的动态数据结构
- 批准号:
1951384 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Dynamic Data Structures for Vectors and Graphs in Sublinear Memory
AF:小:协作研究:子线性存储器中向量和图的动态数据结构
- 批准号:
1909314 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant