EAGER: Develop Robust Light-Scattering Computational Capability Based on the Method of Separation of Variables in Spheroidal Coordinates for Small-to-Large Spheroids

EAGER:基于从小到大球体的球体坐标中的变量分离方法,开发鲁棒的光散射计算能力

基本信息

  • 批准号:
    2153239
  • 负责人:
  • 金额:
    $ 19.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

Dust aerosols affect global climate by partially absorbing and reflecting incoming sunlight and heat energy emitted by the atmosphere and the surface. The optical properties of dust particles are critical to reducing uncertainties in the current knowledge of the role of dust aerosols in the climate system, and thus are important for predicting future climate. The dust particle optical properties are also fundamental for inferring dust aerosol characteristics from space-borne and ground-based remote sensing observations. Dust particles are almost exclusively nonspherical. It has been extensively demonstrated that the spheroidal particle shape model represents a quantum leap forward, compared to the spherical model, for computing the optical properties of nonspherical particles. At present, the optical properties of small-to-large particles can be computed only for spheres. There is a pressing need to have an exact and robust computational capability to compute the optical properties of spheroidal particles. Leveraging advances in computational mathematics, advances in electromagnetic scattering theories, and modern computer technologies and computer coding techniques, this project aims to develop a novel program to compute the optical properties of spheroidal particle in the small-to-large particle size range. Because many bacteria, microweeds, oceanic particles, and interstellar dust particles have approximately spheroidal shapes, the outcome of this project will also find extensive applications in climate science (particularly the radiative energy budget in the climate system), remote sensing, industry, bio-optics, oceanic optics, astrophysics, planetary sciences, and other fields beyond atmospheric sciences. Because this project focuses on a major unsolved interdisciplinary problem and because of significant challenges, particularly from the perspective of computational electromagnetics and mathematics, this project is exploratory but potentially transformative, i.e., “high risk – high payoff”. In addition to its scientific merit, this project contains an educational component to train an early-career researcher in the interdisciplinary area mentioned above. This project aims to solve light scattering by a spheroid in spheroidal coordinates. Although solving the electromagnetic wave equation via the method of separation of variables in spheroid coordinates has been explored, the previously developed models are applicable only to particles that are small with respect to the incident wavelength and have little practical use. The major challenge encountered by the previous effort is numerical instability of spheroidal harmonic functions. This project will seek to achieve numerical stability of spheroidal harmonic functions by using advanced algorithms, such as expressing spheroidal functions in terms of the Wigner-d function. The key to computing spheroidal functions is to find eigenvalues of corresponding spheroidal equations. The radial and angular spheroidal equations are of the Sturm-Liouville type. The eigenvalues will be calculated by the invariant-imbedding method, which is expected to be numerically stable and accurate. Thus, the spheroidal functions are expected to be accurate even with extreme parameters. The overarching goal of this project is to develop a numerically stable capability for accurately computing the optical properties of a spheroid beyond the currently applicable particle size and aspect ratio ranges of other existing computational capabilities, such as the discrete dipole approximation method (DDA), the finite-difference time domain (FDTD) method, the extended boundary condition method (EBCM), and the invariant imbedding T-matrix method (IITM).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
沙尘气溶胶通过部分吸收和反射入射的阳光以及大气和地表发出的热能来影响全球气候。沙尘颗粒的光学特性对于减少目前关于沙尘气溶胶在气候系统中的作用的认识的不确定性至关重要。因此,尘埃粒子的光学特性对于从星载和地面遥感观测中推断尘埃气溶胶特征也很重要。已经广泛证明,尘埃粒子几乎都是非球形的。与球形模型相比,球形颗粒形状模型在计算非球形颗粒的光学特性方面代表了一个巨大的飞跃。目前,迫切需要计算从小到大颗粒的光学特性。为了拥有精确而强大的计算能力来计算球状粒子的光学特性,该项目旨在利用计算数学的进步、电磁散射理论的进步以及现代计算机技术和计算机编码技术,开发一种新颖的计算程序。由于许多细菌、微型杂草、海洋颗粒和星际尘埃颗粒具有近似球形的形状,因此该项目的成果也将在气候科学(特别是气候科学)中得到广泛的应用。气候系统中的辐射能量收支)、遥感、工业、生物光学、海洋光学、天体物理学、行星科学以及大气科学以外的其他领域。该项目是尚未解决的重大跨学科问题,并且由于存在重大挑战,特别是从计算电磁学和数学的角度来看,该项目具有探索性但具有潜在的变革性,即“高风险-高回报”。除了其科学价值外,该项目还具有教育意义。该项目旨在通过分离方法求解椭球体的光散射问题。虽然已经探索了球体坐标中的变量,但先前开发的模型仅适用于相对于入射波长而言较小的粒子,并且几乎没有实际用途。先前的努力遇到的主要挑战是球谐函数的数值不稳定性。该项目将寻求通过使用先进的算法来实现球谐函数的数值稳定性,例如用 Wigner-d 函数来表达球函数。计算球函数的关键是找到特征值。相应的球体方程的径向和角球体方程是Sturm-Liouville类型的,特征值将通过不变嵌入方法计算,该方法预计在数值上稳定且准确。即使在极端参数下也能保持准确。该项目的总体目标是开发一种数值稳定的能力,用于精确计算超出当前适用范围的球体光学特性。其他现有计算能力的粒径和长宽比范围,例如离散偶极近似法(DDA)、时域有限差分法(FDTD)、扩展边界条件法(EBCM)和不变嵌入T矩阵该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ping Yang其他文献

Electrical performance prediction of graphdiyne-C_60 nanocomposite
graphdiyne-C_60纳米复合材料的电性能预测
  • DOI:
    10.1557/s43579-022-00217-1
  • 发表时间:
    2022-09-06
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Yongle Hu;Shan Gao;Zhang Zhang;Juan Guo;Ping Yang
  • 通讯作者:
    Ping Yang
ZmWAK-RLK1 correlates with reduced benzoxazinoid
ZmWAK-RLK1 与减少的苯并嗪类化合物相关
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ping Yang;C. Praz;Beibei Li;J. Singla;C. Robert;Bettina Kessel;4. Daniela;Scheuermann;Linda Lüthi;M. Ouzunova;Matthias Erb;S. Krattinger;B. Keller
  • 通讯作者:
    B. Keller
Robust Optimal Reactive Power Dispatch With Feedback and Correction Against Uncertainty of Transmission Line Parameters
针对输电线路参数的不确定性进行反馈和校正的鲁棒最优无功功率调度
  • DOI:
    10.1109/access.2018.2853262
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Qinhao Li;Yongjun Zhang;T. Ji;Zehuai Liu;Canbing Li;Z. Cai;Ping Yang
  • 通讯作者:
    Ping Yang
Reduced defect density in microcrystalline silicon by hydrogen plasma treatment
通过氢等离子体处理降低微晶硅中的缺陷密度
  • DOI:
    10.1088/1674-4926/34/10/103006
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    J. Li;Xiangbo Zeng;Hao Li;Xiaobing Xie;Ping Yang;H. Xiao;Xiaodong Zhang;Qiming Wang
  • 通讯作者:
    Qiming Wang
Differentiation of Xanthomonas campestris pv. Citri Strains by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis of Proteins, Fatty Acid Analysis, and DNA-DNA Hybridization
野油菜黄单胞菌 pv. 的分化。

Ping Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ping Yang', 18)}}的其他基金

CyberCorps Scholarship for Service: Expanding and Strengthening the National Cybersecurity Workforce
Cyber​​Corps 服务奖学金:扩大和加强国家网络安全劳动力
  • 批准号:
    2146212
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
Development of Community Light Scattering Computational Capabilities
社区光散射计算能力的发展
  • 批准号:
    1826936
  • 财政年份:
    2018
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
CICI: RSARC: Infrastructure Support for Securing Large-Scale Scientific Workflows
CICI:RSARC:确保大规模科学工作流程安全的基础设施支持
  • 批准号:
    1738929
  • 财政年份:
    2017
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Systematic Evaluation and Further Improvement of Present Broadband Radiative Transfer Modeling Capabilities
合作研究:现有宽带辐射传输建模能力的系统评估和进一步改进
  • 批准号:
    1632209
  • 财政年份:
    2016
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Inferring Marine Particle Properties from Polarized Volume Scattering Functions
合作研究:从偏振体散射函数推断海洋颗粒特性
  • 批准号:
    1459180
  • 财政年份:
    2015
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Development of Rigorous Computational Capabilities Based on the Invariant Imbedding Principle for the Simulation of the Optical Properties of Dust and Ice Crystals
基于不变嵌入原理的严格计算能力的发展,用于模拟灰尘和冰晶的光学特性
  • 批准号:
    1338440
  • 财政年份:
    2013
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Study Dust Optical and Radiative Properties Using Optimal Morphological Sets
使用最佳形态集研究灰尘光学和辐射特性
  • 批准号:
    0803779
  • 财政年份:
    2008
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
CAREER: Investigation of the Scattering and Radiative Properties of Ice and Mixed-Phase Clouds
职业:研究冰和混合相云的散射和辐射特性
  • 批准号:
    0239605
  • 财政年份:
    2003
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant

相似国自然基金

组蛋白乳酸化激活ac4C乙酰化促进葡萄膜黑色素瘤发展的作用机制研究
  • 批准号:
    82373298
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
15-PGDH通过AMPK信号通路调控NAFLD发生发展的分子机制研究
  • 批准号:
    82300967
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人工智能技术加剧全球价值链非平衡发展的形成机理与中国对策研究
  • 批准号:
    72303127
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新物质主义视角下旅游商品带动地方发展的格局、过程及作用机制
  • 批准号:
    42371235
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
tRNAMet通过调控富含AUG密码子基因的蛋白翻译促进HCC发展的机制研究
  • 批准号:
    82373963
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Develop High Rate and Robust Quantum Channels for Next Generation Ground to Space Quantum Links
为下一代地对空量子链路开发高速率和鲁棒的量子通道
  • 批准号:
    569351-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Develop High Rate and Robust Quantum Channels for Next Generation Ground to Space Quantum Links
为下一代地对空量子链路开发高速率和鲁棒的量子通道
  • 批准号:
    569351-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Robust AI to develop risk models in retinopathy of prematurity using deep learning
强大的人工智能利用深度学习开发早产儿视网膜病变的风险模型
  • 批准号:
    10254429
  • 财政年份:
    2020
  • 资助金额:
    $ 19.96万
  • 项目类别:
Using electrical conductivity to develop a robust discharge model for a coastal mountain catchment
利用电导率开发沿海山区流域的稳健放电模型
  • 批准号:
    528465-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Quantitative Proteomics to Develop Robust Senescence-Related Biomarkers for Aging
定量蛋白质组学开发强大的衰老相关生物标志物
  • 批准号:
    10403934
  • 财政年份:
    2018
  • 资助金额:
    $ 19.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了