Collaborative Research: Planning Grant: I/UCRC for Advanced Electronics through Machine Learning
合作研究:规划补助金:I/UCRC 通过机器学习实现先进电子学
基本信息
- 批准号:1464539
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-15 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The accepted engineering design methodology requires that mass scale manufacturing of a new product not commence until a prototype of the product is tested and found to meet its performance specifications. It is not unusual for a product to go through multiple design iterations before it can satisfy all the design requirements. Modern electronic products, which range from a single integrated circuit to a smart phone to an aircraft instrumentation system, are so complex and contain so many components - billions in the case of an integrated circuit - that it is infeasible to construct hardware prototypes for each design iteration, from the points of view of both cost and time. Instead, a mathematical representation of the product must be developed, i.e. a virtual prototype, and its behavior then simulated. Each of the components that constitute the product would be represented by a model. Behavioral models of the components are most desirable; a behavioral model represents the terminal response of a component in response to an outside stimulus or signal, without concern to the inner workings of the component. Behavioral models are computationally efficient and have the benefit of obscuring intellectual property. However, despite many years of significant effort by the electronic design automation community, there is not a general, systematic method to generate accurate and comprehensive behavioral models, in part because of the non-linear, complex and multi-port nature of the components being modeled. The proposing team will utilize the planning grant to establish a research center that will overcome these modeling challenges through the development and application of novel machine-learning methods and algorithms.Machine-learning algorithms are used to extract a model of a component or system from input-output data, despite the presence of uncertainty and noise. In this center, the input-output data are obtained either from measurements of a component or by running detailed simulations of a component. The emphasis is on models that balance good predictive ability against computational complexity. The center will pioneer the application of machine learning to electronics modeling. It will develop a methodology to use prior knowledge, i.e., physical constraints and domain knowledge provided by designers, to speed up the learning process. Novel methods of incorporating component variability, including that due to semiconductor process variations, will be developed.
公认的工程设计方法要求,在对产品原型进行测试并发现其满足其性能规格之前,不得开始大规模制造新产品。一款产品在满足所有设计要求之前要经过多次设计迭代的情况并不罕见。现代电子产品的范围从单个集成电路到智能手机再到飞机仪表系统,非常复杂并且包含如此多的组件(集成电路的组件数量达到数十亿),以至于为每个设计构建硬件原型是不可行的迭代,从成本和时间的角度来看。相反,必须开发产品的数学表示,即虚拟原型,然后模拟其行为。构成产品的每个组件都将由一个模型表示。组件的行为模型是最理想的;行为模型表示组件响应外部刺激或信号的最终响应,而不关心组件的内部工作原理。行为模型计算效率高,并且具有隐藏知识产权的优点。然而,尽管电子设计自动化界多年来付出了巨大的努力,但仍然没有一种通用的、系统的方法来生成准确和全面的行为模型,部分原因是组件的非线性、复杂和多端口特性。建模。提议团队将利用规划拨款建立一个研究中心,通过开发和应用新颖的机器学习方法和算法来克服这些建模挑战。机器学习算法用于从输入中提取组件或系统的模型-输出数据,尽管存在不确定性和噪声。在该中心,输入输出数据是通过组件的测量或通过运行组件的详细模拟来获得的。重点是平衡良好的预测能力和计算复杂性的模型。该中心将率先将机器学习应用于电子建模。它将开发一种方法来使用先验知识,即设计人员提供的物理约束和领域知识,以加快学习过程。将开发结合组件可变性(包括由于半导体工艺变化而引起的可变性)的新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Madhavan Swaminathan其他文献
Finite difference modeling of multiple planes in packages
封装中多个平面的有限差分建模
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
A. E. Engin;Madhavan Swaminathan;Yoshitaka Toyota - 通讯作者:
Yoshitaka Toyota
Vertical Power Delivery for High Performance Computing Systems with Buck-Derived Regulators
具有降压稳压器的高性能计算系统的垂直供电
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sriharini Krishnakumar;Mingeun Choi;Ramin Rahimzadeh Khorasani;Rohit Sharma;Madhavan Swaminathan;Satish Kumar;Inna Partin - 通讯作者:
Inna Partin
Design of High-Speed Links via a Machine Learning Surrogate Model for the Inverse Problem
通过反问题的机器学习代理模型设计高速链路
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
R. Trinchero;M. A. Dolatsara;Kallol Roy;Madhavan Swaminathan;F. Canavero - 通讯作者:
F. Canavero
Reinforcement Learning Applied to the Optimization of Power Delivery Networks with Multiple Voltage Domains
强化学习应用于多电压域供电网络的优化
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Seunghyup Han;O. W. Bhatti;W. Na;Madhavan Swaminathan - 通讯作者:
Madhavan Swaminathan
Analysis and Design of Electromagnetic Bandgap (EBG) Structures for Power Plane Isolation Using 2D Dispersion Diagrams and Scalability
使用 2D 色散图和可扩展性分析和设计用于电源平面隔离的电磁带隙 (EBG) 结构
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Arif Ege Engin;Yoshitaka Toyota;Tae Hong Kim;Madhavan Swaminathan - 通讯作者:
Madhavan Swaminathan
Madhavan Swaminathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Madhavan Swaminathan', 18)}}的其他基金
IUCRC Phase II Georgia Institute of Technology: Center for Advanced Electronics through Machine Learning [CAEML]
IUCRC 第二期佐治亚理工学院:机器学习先进电子学中心 [CAEML]
- 批准号:
2345055 - 财政年份:2023
- 资助金额:
$ 1.15万 - 项目类别:
Continuing Grant
IUCRC Phase II Georgia Institute of Technology: Center for Advanced Electronics through Machine Learning [CAEML]
IUCRC 第二期佐治亚理工学院:机器学习先进电子学中心 [CAEML]
- 批准号:
2137259 - 财政年份:2022
- 资助金额:
$ 1.15万 - 项目类别:
Continuing Grant
I/UCRC: Center for Advanced Electronics through Machine Learning (CAEML)
I/UCRC:机器学习先进电子学中心 (CAEML)
- 批准号:
1624731 - 财政年份:2016
- 资助金额:
$ 1.15万 - 项目类别:
Continuing Grant
Design and Modeling Framework for Managing Variability in Silicon Interposers for 3D Integration
用于管理 3D 集成硅中介层可变性的设计和建模框架
- 批准号:
1129918 - 财政年份:2011
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Offchip Interconnect Signaling Scheme with Near Zero Simultaneous Switching Noise
具有近零同步开关噪声的片外互连信令方案
- 批准号:
0967134 - 财政年份:2010
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Inter-University Workshop on Next Generation Package Design
下一代包装设计大学间研讨会
- 批准号:
9711762 - 财政年份:1997
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
相似国自然基金
轮足人形机器人多模式运动规划与控制方法研究
- 批准号:62373217
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
颅颌面手术机器人辅助半面短小牵张成骨术的智能规划与交互协作研究
- 批准号:
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:
无人系统空地协同搜救任务规划方法研究
- 批准号:62303354
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向绿色出行的智能路径计算与规划技术研究
- 批准号:62372194
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
不确定测量下海底勘探型UUV自主导航定位与规划方法研究
- 批准号:62303467
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
- 批准号:
2335568 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
- 批准号:
2335569 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
- 批准号:
2335570 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Conference support for the 2nd RAID Science Planning Workshop
协作研究:会议:对第二届 RAID 科学规划研讨会的会议支持
- 批准号:
2348965 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Collaborative Research: Interaction-aware Planning and Control for Robotic Navigation in the Crowd
协作研究:人群中机器人导航的交互感知规划和控制
- 批准号:
2423131 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant