Argument Graph Supported Multi-Level Approach for Argumentative Writing Assistance

论证图支持多层次的议论文写作辅助方法

基本信息

  • 批准号:
    2302564
  • 负责人:
  • 金额:
    $ 84.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Proficiency in argumentative writing contributes to one's academic and professional success. However, the Nation's Report Card shows that most adolescents are not skilled in argumentation and frequently experience difficulty when comprehending arguments and constructing well-rounded essays. Traditional teaching approaches for argumentative writing often require students to practice writing a whole essay before receiving feedback, missing deliberate practice opportunities on each difficulty factor that the students experience. On the other hand, while formative and personalized feedback is useful in improving students' logical writing skills, it requires substantive efforts by instructors and causes delays in feedback. This project will generate new insights into artificial intelligence and human-computer interaction capabilities for enhancing student learning of argumentative writing. The proposed research will advance the understanding of how people learn argumentative writing and argumentation. The project will improve the state-of-the-art in natural language processing by developing techniques for argument mining and argument quality measurement. The developed argumentative writing tools can be broadly applicable to many domains, thus providing learning and practice opportunities to anyone who wants to improve their argumentative writing skills. This project will also promote STEM education diversity with a focus on attracting and mentoring women and underrepresented minorities in computer science. The findings, open-source codes, and argumentative writing assistance system will be demonstrated and distributed to the public through various outreach activities at the University of Michigan. Concretely, this project will investigate efficient and scalable pedagogical approaches for argumentative writing. Three main research thrusts will be explored. First, a personalized argumentative writing tutoring system, ARGUABLE, will be built. ARGUABLE is designed with two learning modes: (1) learning with examples, and (2) practicing and getting feedback, each containing practice opportunities and actionable feedback targeting different argumentation skills. Second, novel natural language processing and machine learning models will be investigated to enable multi-level argument understanding and interpretable essay quality measurement. Novel representation learning methods that capture long-distance relations are investigated to extract argument structures more accurately. Graphical representation encoding methods will be used to support feedback provision at multiple levels. A revision suggestion retrieval system will also be built to support novice students with concrete ideas for writing improvement. Finally, evaluations will be conducted in collaboration with instructors who teach argumentative writing at the Ann Arbor and the Dearborn campuses of the University of Michigan, to assess the effectiveness of ARGUABLE.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
熟练掌握议论文写作有助于一个人在学术和职业上的成功。然而,国家报告卡显示,大多数青少年不具备论证技巧,并且在理解论证和构建全面的论文时经常遇到困难。传统的议论文教学方法通常要求学生在收到反馈之前练习写整篇论文,从而错过了对学生遇到的每个困难因素进行刻意练习的机会。另一方面,虽然形成性和个性化的反馈有助于提高学生的逻辑写作能力,但它需要教师付出实质性的努力,并且会导致反馈的延迟。该项目将对人工智能和人机交互能力产生新的见解,以增强学生议论文写作的学习。拟议的研究将增进对人们如何学习议论文和论证的理解。该项目将通过开发论证挖掘和论证质量测量技术来提高自然语言处理的最新水平。开发的议论文写作工具可以广泛适用于许多领域,从而为任何想要提高议论文写作技巧的人提供学习和练习的机会。该项目还将促进 STEM 教育多样性,重点是吸引和指导计算机科学领域的女性和代表性不足的少数群体。研究结果、开源代码和议论文写作辅助系统将通过密歇根大学的各种外展活动向公众展示和分发。具体来说,该项目将研究有效且可扩展的议论文教学方法。将探讨三个主要研究方向。首先,打造个性化议论文辅导系统ARGUABLE。 ARGUABLE 设计有两种学习模式:(1) 通过示例学习,(2) 练习和获取反馈,每种模式都包含针对不同论证技能的练习机会和可操作的反馈。其次,将研究新颖的自然语言处理和机器学习模型,以实现多层次的论点理解和可解释的论文质量测量。研究了捕获长距离关系的新颖表示学习方法,以更准确地提取论证结构。图形表示编码方法将用于支持多个级别的反馈提供。还将建立修改建议检索系统,为新手提供写作改进的具体想法。最后,将与密歇根大学安娜堡分校和迪尔伯恩校区教授议论文写作的教师合作进行评估,以评估 ARGUABLE 的有效性。该奖项反映了 NSF 的法定使命,并通过评估被认为值得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lu Wang其他文献

Experimental Study on Sweep Characteristics of Gas Gravity Drainage in the Interlayer Oil Reservoir
层间油藏天然气重力排水波及特性试验研究
  • DOI:
    10.3389/fenrg.2021.760315
  • 发表时间:
    2021-11-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hong;Lu Wang;Daiyu Zhou;Fuyong Wang;Shi Li;Jun Li;Xinglong Chen;An;Haishui Han
  • 通讯作者:
    Haishui Han
Programed self-assembly of microstructures: self-sorting based on size-matched disk-like molecules and remarkable cooperative reinforcement of hydrogen-bonding and donor–acceptor interaction
微结构的程序化自组装:基于尺寸匹配的盘状分子的自排序以及氢键和供体-受体相互作用的显着协同增强
  • DOI:
    10.1016/j.tetlet.2011.05.082
  • 发表时间:
    2011-07-20
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Zeyun Xiao;Lu Wang;Xin Zhao;Xi;Zhanting Li
  • 通讯作者:
    Zhanting Li
Acute Genotoxic Stress-Induced Senescence in Human Mesenchymal Cells Drives a Unique Composition of Senescence Messaging Secretome (SMS)
人类间充质细胞中急性基因毒性应激诱导的衰老驱动衰老信息分泌组 (SMS) 的独特组成
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Gaur;Lu Wang;Alex;ra Amaro;M. Dobke;I. Jordan;V. Lunyak
  • 通讯作者:
    V. Lunyak
Reply to: The role of recruitment versus training in influenza-induced lasting changes to alveolar macrophage function
回复:招募与训练在流感引起的肺泡巨噬细胞功能持久变化中的作用
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    30.5
  • 作者:
    Tao Wang;Jinjing Zhang;Lu Wang;Yanling Wang;Ying Li;Yushi Yao
  • 通讯作者:
    Yushi Yao
Genomics-informed insights into microbial degradation of N,N-dimethylformamide
基于基因组学的 N,N-二甲基甲酰胺微生物降解见解
  • DOI:
    10.1101/2021.03.18.435917
  • 发表时间:
    2021-03-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junhui Li;P. Dijkstra;Qihong Lu;Shanquan Wang;Shaohua Chen;Deqiang Li;Zhiheng Wang;Zhenglei Jia;Lu Wang;H. Shim
  • 通讯作者:
    H. Shim

Lu Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lu Wang', 18)}}的其他基金

Conference: Doctoral Consortium at Student Research Workshop at the Annual Meeting of the Association for Computational Linguistics
会议:计算语言学协会年会学生研究研讨会上的博士联盟
  • 批准号:
    2307288
  • 财政年份:
    2023
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Standard Grant
CRII:SCH: Interactive Explainable Deep Survival Analysis
CRII:SC​​H:交互式可解释深度生存分析
  • 批准号:
    2245739
  • 财政年份:
    2023
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Entity- and Event-driven Media Bias Detection
协作研究:III:小型:实体和事件驱动的媒体偏差检测
  • 批准号:
    2127747
  • 财政年份:
    2021
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Standard Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
  • 批准号:
    2105576
  • 财政年份:
    2021
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Continuing Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
  • 批准号:
    2146997
  • 财政年份:
    2021
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: From User Reviews to User-Centered Generative Design: Automated Methods for Augmented Designer Performance
协作研究:从用户评论到以用户为中心的生成设计:增强设计师性能的自动化方法
  • 批准号:
    2050130
  • 财政年份:
    2021
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Standard Grant
CAREER: Long Document Summarization with Question-Summary Hierarchy and User Preference Control
职业:具有问题摘要层次结构和用户偏好控制的长文档摘要
  • 批准号:
    2046016
  • 财政年份:
    2021
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Continuing Grant
Geometric Flows and Applications
几何流及其应用
  • 批准号:
    2141529
  • 财政年份:
    2021
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Continuing Grant
RI: Small: Collaborative Research: Computational Methods for Argument Mining: Extraction, Aggregation, and Generation
RI:小型:协作研究:参数挖掘的计算方法:提取、聚合和生成
  • 批准号:
    2100885
  • 财政年份:
    2020
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Standard Grant
Evaluation of Hypothermic Oxygenated Perfusion Ex-Vivo Heart Perfusion to Expand the Donor Pool and Improve Transplant Outcomes
评估低温氧合灌注离体心脏灌注以扩大供体库并改善移植结果
  • 批准号:
    MR/V002074/1
  • 财政年份:
    2020
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Fellowship

相似国自然基金

基于图形基因组解析新疆甜瓜果实发育的分子遗传基础
  • 批准号:
    32360749
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
图形晶圆深亚波长缺陷的多模式光学检测方法
  • 批准号:
    52305584
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
斑图形成中的小分母问题
  • 批准号:
    12371158
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
植被斑图形成机制的动力学模型研究及数据分析
  • 批准号:
    12301639
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
自动图形化静电打印技术的材料转移及连接机理研究
  • 批准号:
    52375321
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
  • 批准号:
    2347177
  • 财政年份:
    2024
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347321
  • 财政年份:
    2024
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Standard Grant
SaTC: EDU: AI for Cybersecurity Education via an LLM-enabled Security Knowledge Graph
SaTC:EDU:通过支持 LLM 的安全知识图进行网络安全教育的人工智能
  • 批准号:
    2335666
  • 财政年份:
    2024
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Standard Grant
REU Site: Graph Learning and Network Analysis: from Foundations to Applications (GraLNA)
REU 网站:图学习和网络分析:从基础到应用 (GraLNA)
  • 批准号:
    2349369
  • 财政年份:
    2024
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了