I/UCRC: Center for Advanced Electronics through Machine Learning (CAEML)

I/UCRC:机器学习先进电子学中心 (CAEML)

基本信息

  • 批准号:
    1624731
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

The semiconductor industry is perennially one of America's top exporters. Worldwide semiconductor sales for 2014 reached $335.8 billion, and the number of U.S. jobs in this sector was estimated to be around 250,000 in 2013. More broadly, the U.S. tech industry, which depends on semiconductor innovation to spur new products and applications, is itself estimated to represent no less than 5.7% of the entire U.S. private sector workforce (at nearly 6.5 million jobs), and with a tech industry payroll of $654 billion in 2014, it accounted for over 11% of all U.S. private sector payroll. Yet despite its success, the industry must continue to innovate if the U.S. is to retain global leadership in this highly competitive area. The complexity of modern microelectronic products necessitates the use of computer tools to formulate and verify product designs prior to manufacturing. When a product doesn't operate as intended or suffers early failures, this can often be attributed to inadequacy of the models used during the design process. In fact, the shortcomings of existing approaches for system component modeling have become a serious impediment to continued innovation.The Center for Advanced Electronics through Machine Learning (CAEML) proposes to create machine-learning algorithms to derive models used for electronic design automation with the objective of enabling fast, accurate design of microelectronic circuits and systems. Success will make it much easier and cheaper to optimize a system design, allowing the industry to produce lower-power and lower-cost electronic systems without sacrificing functionality. The eventual result will be significant growth in capabilities that will drive innovation throughout the electronics industry, leading to new devices and applications, continued entrepreneurial leadership, and economic growth.While achieving those goals, CAEML will also focus on diversifying the undergraduate engineering student body and improving the undergraduate experience. Students from groups traditionally underrepresented in engineering will be targeted for recruitment as undergraduate research assistants. Member companies will provide internships and mentors for participating students, and the diverse graduate and undergraduate student researchers in CAEML will receive hands-on multidisciplinary education. CAEML will also participate in all three site universities' existing avenues for student and faculty engagement with local youth. In particular, university-based summer camps are a tried and tested method of making high-school students familiar with and comfortable on our campuses. The HOT DAYS @ Georgia Tech (https://www.ece.gatech.edu/outreach/hot-days) camp is a week-long summer program designed to introduce high-school students to electrical and computer engineering concepts through various half-day modules including building a computer, working with robots, using music synthesis technology, building simple digital logic circuits and constructing a speaker from common household items. Additional modules covering CAEML research areas will be developed and incorporated into the camp's schedule. CAEML undergraduate and graduate students can serve as counselors or instructors for camps. Georgia Tech's Center for Education Integrating Science, Mathematics, and Computing (CEISMC) hosts a variety of camps and programs for K-12 teachers, as well as students. CAEML faculty at Georgia Tech will participate in that effort as well as the NSF-funded Summer Teacher Experience in Packaging, Utilizing Physics (STEP-UP) Program (https://www.ece.gatech.edu/outreach/step-up-program), which is an eight-week research experience for metro Atlanta high-school physics teachers.The Center for Advanced Electronics through Machine Learning (CAEML) will create machine-learning algorithms to derive models used for electronic design automation, with the objective of enabling fast, accurate design of microelectronic circuits and systems. The electronics industry's continued ability to innovate requires the creation of optimization methodologies that result in low-power integrated systems that meet performance specifications, despite being composed of components whose characteristics exhibit variability and that operate in different physical or signal domains. Today, shortcomings in accuracy and comprehensiveness of component-level behavioral models impede the advancement of computer-aided electronic system design optimization. The model accuracy also impacts system verification. Ultimately, the proper functionality of an electronic system is verified through testing of a representative sample. However, modern electronic systems are so complex that it is unthinkable to bring one to the manufacturing stage without first verifying its operation using simulation. Today, simulation generally does not ensure that an integrated circuit or electronic system will pass qualification testing the first time, and failures are often attributed to insufficiency of the simulation models. With an improved modeling capability, one could achieve better design efficiency, and also perform design optimization. For system simulation, behavioral models of the components' terminal responses are desired for both computational tractability and protection of intellectual property. Despite many years of significant effort by the electronic design automation community, there is not a general, systematic method to generate accurate and comprehensive behavioral models, in part because of the nonlinear, complex, and multi-port nature of the components being modeled.CAEML will pioneer the use of machine-learning methods to extract behavioral models of electronic components and subsystems from simulation waveforms and/or measurement data. The Center will make 2 primary contributions to the field of machine learning: it will demonstrate the application of machine learning to electronics modeling, and develop the entire machine-learning pipeline. Historically, machine-learning theorists have focused on the model learning and evaluation tasks, but CAEML will focus on end-to-end performance of the pipeline, including data acquisition, selection and filtering, as well as cost function specification. CAEML will develop a methodology to use prior knowledge, i.e., physical constraints and the domain knowledge provided by designers, to speed up the learning process. Novel methods of incorporating component variability, including that due to semiconductor process variations, will be developed. The intended end-users are electronic design automation (EDA) tool developers, IC design houses, and system design and manufacturing companies.CAEML consists of 3 sites: Illinois, Georgia Tech, and NC State. The scope of research at each site encompasses both algorithm development and the application of the derived models to a variety of IC and system design tasks. Investigators at all 3 university sites have unique skills and expertise while sharing interests in electronic design automation, IC design, system-level signal integrity, and power distribution. To leverage the cross-campus expertise, many of the Center's proposed projects involve investigators from more than one site. The Georgia Tech investigators have special expertise in advanced IC packaging, power integrity, multi-physics simulation, computational electromagnetics, neural networks, optimization and system integration. All three sites have strong research records in the fields of signal integrity analysis and electronic design automation. Excellent computational resources are available at Georgia Tech for the proposed work including extensive measurement and fabrication facilities.
半导体行业一直是美国最大的出口行业之一。 2014 年全球半导体销售额达到 3,358 亿美元,2013 年美国该行业的就业人数估计约为 250,000 个。更广泛地说,依赖半导体创新来刺激新产品和应用的美国科技行业本身估计占美国私营部门劳动力总量(近 650 万个工作岗位)的不少于 5.7%,科技行业的工资总额为2014 年为 6540 亿美元,占美国私营部门工资总额的 11% 以上。然而,尽管取得了成功,如果美国想要在这个竞争激烈的领域保持全球领先地位,该行业就必须继续创新。现代微电子产品的复杂性要求在制造之前使用计算机工具来制定和验证产品设计。当产品未按预期运行或出现早期故障时,通常可归因于设计过程中使用的模型不足。事实上,现有系统组件建模方法的缺点已经成为持续创新的严重障碍。机器学习先进电子中心(CAEML)建议创建机器学习算法来导出用于电子设计自动化的模型,其目标是实现快速、准确的微电子电路和系统设计。成功将使优化系统设计变得更加容易和更加便宜,从而使该行业能够在不牺牲功能的情况下生产低功耗和低成本的电子系统。最终的结果将是能力的显着增长,推动整个电子行业的创新,带来新的设备和应用、持续的创业领导力和经济增长。在实现这些目标的同时,CAEML 还将专注于本科工程学生群体的多元化,改善本科生体验。来自工程领域传统上代表性不足的群体的学生将被招募为本科生研究助理。成员公司将为参与的学生提供实习机会和导师,CAEML 中多元化的研究生和本科生研究人员将接受实践性的多学科教育。 CAEML 还将参与所有三所大学现有的学生和教师与当地青年互动的途径。特别是,以大学为基础的夏令营是一种久经考验的方法,可以让高中生熟悉并适应我们的校园。 HOT DAYS @ Georgia Tech (https://www.ece.gatech.edu/outreach/hot-days) 夏令营是一个为期一周的暑期项目,旨在通过各种半-向高中生介绍电气和计算机工程概念。日间模块包括构建计算机、使用机器人、使用音乐合成技术、构建简单的数字逻辑电路以及用常见的家居用品构建扬声器。涵盖 CAEML 研究领域的其他模块将被开发并纳入夏令营的日程安排中。 CAEML本科生和研究生可以担任夏令营的辅导员或讲师。佐治亚理工学院的科学、数学和计算机综合教育中心 (CEISMC) 为 K-12 教师和学生举办各种夏令营和项目。佐治亚理工学院的 CAEML 教师将参与这项工作以及 NSF 资助的包装、利用物理暑期教师体验 (STEP-UP) 项目 (https://www.ece.gatech.edu/outreach/step-up-计划),这是为亚特兰大都会区高中物理教师提供的为期八周的研究体验。通过机器学习实现高级电子学中心 (CAEML) 将创建机器学习算法来导出用于电子设计自动化的模型,其目标是实现快速、准确的设计微电子电路和系统。电子行业的持续创新能力需要创建优化方法,以产生满足性能规格的低功耗集成系统,尽管该系统由特性表现出可变性并且在不同物理或信号域中运行的组件组成。如今,组件级行为模型的准确性和全面性方面的缺陷阻碍了计算机辅助电子系统设计优化的进步。模型准确性也会影响系统验证。最终,通过测试代表性样品来验证电子系统的正常功能。然而,现代电子系统非常复杂,如果不首先使用仿真验证其操作,就将其进入制造阶段是不可想象的。如今,仿真通常不能确保集成电路或电子系统能够一次性通过资格测试,而失败通常归因于仿真模型的不充分。通过改进的建模能力,可以实现更好的设计效率,并进行设计优化。对于系统仿真,需要组件终端响应的行为模型,以实现计算的易处理性和知识产权的保护。尽管电子设计自动化社区多年来付出了巨大的努力,但仍然没有一种通用的、系统的方法来生成准确且全面的行为模型,部分原因是所建模组件的非线性、复杂性和多端口性质。CAEML将率先使用机器学习方法从仿真波形和/或测量数据中提取电子元件和子系统的行为模型。该中心将为机器学习领域做出两个主要贡献:展示机器学习在电子建模中的应用,并开发整个机器学习管道。历史上,机器学习理论家一直关注模型学习和评估任务,但 CAEML 将关注管道的端到端性能,包括数据采集、选择和过滤,以及成本函数规范。 CAEML 将开发一种方法来使用先验知识,即物理约束和设计师提供的领域知识,以加快学习过程。将开发结合组件可变性(包括由于半导体工艺变化而引起的可变性)的新方法。目标最终用户是电子设计自动化 (EDA) 工具开发商、IC 设计公司以及系统设计和制造公司。CAEML 包含 3 个站点:伊利诺伊州、佐治亚理工学院和北卡罗来纳州。每个站点的研究范围都包括算法开发以及派生模型在各种 IC 和系统设计任务中的应用。所有 3 所大学的研究人员都拥有独特的技能和专业知识,同时在电子设计自动化、IC 设计、系统级信号完整性和配电方面都有共同的兴趣。为了利用跨校区的专业知识,该中心的许多拟议项目都涉及来自多个地点的研究人员。佐治亚理工学院的研究人员在先进 IC 封装、电源完整性、多物理场仿真、计算电磁学、神经网络、优化和系统集成方面拥有特殊的专业知识。所有三个站点在信号完整性分析和电子设计自动化领域都拥有强大的研究记录。佐治亚理工学院为拟议的工作提供了优秀的计算资源,包括广泛的测量和制造设施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Madhavan Swaminathan其他文献

Finite difference modeling of multiple planes in packages
封装中多个平面的有限差分建模
Vertical Power Delivery for High Performance Computing Systems with Buck-Derived Regulators
具有降压稳压器的高性能计算系统的垂直供电
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sriharini Krishnakumar;Mingeun Choi;Ramin Rahimzadeh Khorasani;Rohit Sharma;Madhavan Swaminathan;Satish Kumar;Inna Partin
  • 通讯作者:
    Inna Partin
Design of High-Speed Links via a Machine Learning Surrogate Model for the Inverse Problem
通过反问题的机器学习代理模型设计高速链路
Reinforcement Learning Applied to the Optimization of Power Delivery Networks with Multiple Voltage Domains
强化学习应用于多电压域供电网络的优化
Analysis and Design of Electromagnetic Bandgap (EBG) Structures for Power Plane Isolation Using 2D Dispersion Diagrams and Scalability
使用 2D 色散图和可扩展性分析和设计用于电源平面隔离的电磁带隙 (EBG) 结构

Madhavan Swaminathan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Madhavan Swaminathan', 18)}}的其他基金

IUCRC Phase II Georgia Institute of Technology: Center for Advanced Electronics through Machine Learning [CAEML]
IUCRC 第二期佐治亚理工学院:机器学习先进电子学中心 [CAEML]
  • 批准号:
    2345055
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
IUCRC Phase II Georgia Institute of Technology: Center for Advanced Electronics through Machine Learning [CAEML]
IUCRC 第二期佐治亚理工学院:机器学习先进电子学中心 [CAEML]
  • 批准号:
    2137259
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: Planning Grant: I/UCRC for Advanced Electronics through Machine Learning
合作研究:规划补助金:I/UCRC 通过机器学习实现先进电子学
  • 批准号:
    1464539
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Design and Modeling Framework for Managing Variability in Silicon Interposers for 3D Integration
用于管理 3D 集成硅中介层可变性的设计和建模框架
  • 批准号:
    1129918
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Offchip Interconnect Signaling Scheme with Near Zero Simultaneous Switching Noise
具有近零同步开关噪声的片外互连信令方案
  • 批准号:
    0967134
  • 财政年份:
    2010
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Inter-University Workshop on Next Generation Package Design
下一代包装设计大学间研讨会
  • 批准号:
    9711762
  • 财政年份:
    1997
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

面向SAR ATR的介质与金属混合目标散射中心正向建模研究
  • 批准号:
    62301215
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
金属中心遥控多孔配位笼特异性光催化
  • 批准号:
    22371067
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
温和条件下柴油超深度脱硫复合材料双活性中心协同及构效机制研究
  • 批准号:
    22378065
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向数据中心光交换端网融合调度与协同控制技术研究
  • 批准号:
    62301062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NF-κB p65促进CEP192与Aurora A结合进而调控中心体成熟的作用机制研究
  • 批准号:
    32300605
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

I/UCRC Phase III Iowa State University: Center for Advanced Non-Ferrous Structural Alloys (CANFSA)
I/UCRC 第三期爱荷华州立大学:先进有色金属结构合金中心 (CANFSA)
  • 批准号:
    2137250
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
I/UCRC Phaser III at North Carolina State University: Center for Advanced Forestry Systems
北卡罗来纳州立大学 I/UCRC Phaser III:先进林业系统中心
  • 批准号:
    1916552
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Planning I/UCRC Virginia Polytechnic Institute and State University: Center for Advanced Subsurface Earth Resource Models
规划 I/UCRC 弗吉尼亚理工学院和州立大学:高级地下地球资源模型中心
  • 批准号:
    1650463
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Phase II I/UCRC University of Wisconsin-Milwaukee: Center for Grid-connected Advanced Power Electronic Systems (GRAPES)
第二阶段 I/UCRC 威斯康星大学密尔沃基分校:并网先进电力电子系统中心 (GRAPES)
  • 批准号:
    1650470
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Planning I/UCRC Colorado School of Mines: Center for Advanced Subsurface Earth Resource Models
规划 I/UCRC 科罗拉多矿业学院:高级地下地球资源模型中心
  • 批准号:
    1650500
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了