Some Problems on Analyses and Applications of Centroidal Voronoi Tessellations

质心Voronoi曲面细分分析及应用的几个问题

基本信息

  • 批准号:
    0609575
  • 负责人:
  • 金额:
    $ 12.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

Centroidal Voronoi tessellations (CVTs) are special Voronoi tessellations having the property that the generators of the Voronoi tessellation are also the centers of mass, with respect to a given density function, of the corresponding Voronoi cells. CVTs have been very usedful in a wide range of research fields, including image and data analysis, vector quantization, computer graphics, resource optimization, cell biology, numerical solution of partial differential equations, optimal control, mobile sensing networks, and so on. This project aims at further analysis on CVTs' properties and algorithms, and the broadening of applications for which CVTs and related concepts can be used as a basis for more efficient and accurate treatments.In the theoretical aspects, the convergence and acceleration schemes of popular algorithms for computing CVTs and generalization of CVTs in other metric settings and with hierarchical structures will be studied. In the application aspects, the investigator will develop and implement robust CVT-based mesh generation and optimization algorithms, and then incorporate them in adaptive computations of numerical partial differential equations using finite element methods or finite volume methods, and in the solution of some challenging physical problems on the sphere and other surfaces such as geophysical flows, in light of the high-quality CVT-based surface meshing.Also considered will be the cortical surface-flattening techniques based on the CVT methodology, which are very important to brain-imaging data analysis, including quantitative mapping of functional variability and construction of probabilistic brain-surface atlases. The proposed research will offer new insight into a number of outstanding theoretical issues and lead to renovation of computational algorithms for diverse important applications in science and engineering. The software resulting from this project will be actively disseminated, so that it can be used not only by researchers in the scientific computing area, but also by practitioners in a much broader community for application to problems in interdisciplinary sciences.
质心Voronoi Tessellations(CVT)是具有特殊的voronoi镶嵌物,其特性具有相应的Voronoi细胞的给定密度函数,而voronoi tessellation的发电机也是质量中心。 CVT在广泛的研究字段中非常有用,包括图像和数据分析,矢量量化,计算机图形,资源优化,细胞生物学,部分微分方程的数值解决方案,最佳控制,移动传感网络等。 This project aims at further analysis on CVTs' properties and algorithms, and the broadening of applications for which CVTs and related concepts can be used as a basis for more efficient and accurate treatments.In the theoretical aspects, the convergence and acceleration schemes of popular algorithms for computing CVTs and generalization of CVTs in other metric settings and with hierarchical structures will be studied. 在应用程序方面,研究人员将使用有限元方法或有限的体积方法来开发和实施基于CVT的基于CVT的网状生成和优化算法,然后将它们纳入数值偏微分方程的自适应计算中,并在诸如地球体上的其他表面上遇到一些挑战性的物理问题,例如,在诸如地球体上遇到了较高的效果,以示为较高的效果,以示地地理位置。基于CVT方法论的皮质表面压纹技术,对于大脑成像分析非常重要,包括功能变异性的定量映射和概率脑表面图谱的构建。 拟议的研究将为许多出色的理论问题提供新的见解,并导致对科学和工程中各种重要应用的计算算法进行翻新。 该项目产生的软件将被积极传播,因此,科学计算领域的研究人员不仅可以使用它,而且可以由更广泛的社区中的从业者使用,以应用于跨学科科学的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lili Ju其他文献

Unconditionally Energy Stable Linear Schemes for the Diffuse Interface Model with Peng–Robinson Equation of State
具有Peng-Robinson状态方程的漫反射界面模型的无条件能量稳定线性方案
  • DOI:
    10.1007/s10915-017-0576-7
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Hongwei Li;Lili Ju;Chenfei Zhang;Qiujin Peng
  • 通讯作者:
    Qiujin Peng
Dynamically regularized Lagrange multiplier schemes with energy dissipation for the incompressible Navier-Stokes equations
  • DOI:
    10.1016/j.jcp.2024.113550
  • 发表时间:
    2025-01-15
  • 期刊:
  • 影响因子:
  • 作者:
    Cao-Kha Doan;Thi-Thao-Phuong Hoang;Lili Ju;Rihui Lan
  • 通讯作者:
    Rihui Lan
Overlapping domain decomposition based exponential time differencing methods for semilinear parabolic equations
基于重叠域分解的半线性抛物型方程指数时间差分法
  • DOI:
    10.1007/s10543-020-00817-0
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Xiao Li;Lili Ju;Thi-Thao-Phuong Hoang
  • 通讯作者:
    Thi-Thao-Phuong Hoang
Conservative explicit local time-stepping schemes for the shallow water equations
浅水方程的保守显式局部时间步进方案

Lili Ju的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lili Ju', 18)}}的其他基金

Maximum Bound Principle-Preserving Time Integration Methods for Some Semilinear Parabolic Equations
一些半线性抛物方程的最大有界原理-保时积分方法
  • 批准号:
    2109633
  • 财政年份:
    2021
  • 资助金额:
    $ 12.28万
  • 项目类别:
    Standard Grant
Study on Localized Exponential Time Differencing Methods for Evolution Partial Differential Equations
演化偏微分方程的局部指数时差法研究
  • 批准号:
    1818438
  • 财政年份:
    2018
  • 资助金额:
    $ 12.28万
  • 项目类别:
    Standard Grant
Fast and Stable Compact Exponential Time Difference Based Methods for Some Parabolic Equations
一些抛物方程的快速稳定的基于紧指数时差的方法
  • 批准号:
    1521965
  • 财政年份:
    2015
  • 资助金额:
    $ 12.28万
  • 项目类别:
    Standard Grant
Numerical Improvements, Mesh Adaptation and Parameter Identification for Parallel Finite Element Stokes Ice Sheet Modeling
并行有限元斯托克斯冰盖建模的数值改进、网格自适应和参数识别
  • 批准号:
    1215659
  • 财政年份:
    2012
  • 资助金额:
    $ 12.28万
  • 项目类别:
    Standard Grant
Study on Algorithms and Applications of Centroidal Voronoi Tessellations
质心Voronoi曲面细分算法及应用研究
  • 批准号:
    0913491
  • 财政年份:
    2009
  • 资助金额:
    $ 12.28万
  • 项目类别:
    Standard Grant

相似国自然基金

弱约束条件下超高维函数型数据分析的一些问题
  • 批准号:
    12371268
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
具有非负数量曲率带边流形上的一些几何分析问题研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具有非负数量曲率带边流形上的一些几何分析问题研究
  • 批准号:
    12101619
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
流体及相关方程中一些自由边界问题的定性分析
  • 批准号:
    12171267
  • 批准年份:
    2021
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
线性或非线性约束下一些排序问题的复杂性和算法
  • 批准号:
    11801589
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Inverse problems for degenerate hyperbolic partial differential equations on manifolds
流形上简并双曲偏微分方程的反问题
  • 批准号:
    22K20340
  • 财政年份:
    2022
  • 资助金额:
    $ 12.28万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Longitudinal Antecedents of Attention Problems in Very Preterm Children: Role of Epigenetics, Executive Function, and Caregiver Psychological Distress
极早产儿注意力问题的纵向前因:表观遗传学、执行功能和照顾者心理困扰的作用
  • 批准号:
    10597123
  • 财政年份:
    2022
  • 资助金额:
    $ 12.28万
  • 项目类别:
Clinical Research & Patient Care Core (CRPCC)
临床研究
  • 批准号:
    10431471
  • 财政年份:
    2022
  • 资助金额:
    $ 12.28万
  • 项目类别:
Utilizing All of Us data to examine the impact of COVID-19 on mental health among people living with HIV
利用 All of Us 数据研究 COVID-19 对 HIV 感染者心理健康的影响
  • 批准号:
    10657875
  • 财政年份:
    2022
  • 资助金额:
    $ 12.28万
  • 项目类别:
Geometric analysis of partial differential equations and inverse problems
偏微分方程和反问题的几何分析
  • 批准号:
    22K03381
  • 财政年份:
    2022
  • 资助金额:
    $ 12.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了