Study on Localized Exponential Time Differencing Methods for Evolution Partial Differential Equations
演化偏微分方程的局部指数时差法研究
基本信息
- 批准号:1818438
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many important physical phenomena are modeled by semilinear or fully nonlinear evolution partial differential equations. The overall goal of the project is to enhance the efficiency and scalability of exponential integrator-based methods for solving these equations by designing and analyzing highly scalable localized exponential time differencing methods and to apply them to numerically simulate and investigate a wide range of related application problems in science and engineering. The proposed work is of practical interest with significant influences as the developed methods are highly scalable on modern supercomputer systems, and can serve as an efficient, accurate and stable computational tool for simulations of these stiff problems. Direct and transformative innovations resulting from the project will greatly improve modeling and computational capabilities for many fields, such as design of new materials and oil recovery from fractured oil reservoirs. In addition, this project will also offer a unique educational opportunity for graduate students with interests in computational and applied mathematics by having them participate in an interdisciplinary research environment.Direct parallelization of global exponential time differencing methods is often very hard to be scalable on massively distributed systems due to the intensive data communications needed by fast Fourier transform or by Krylov subspace-based calculations for products of matrix exponentials and vectors. On the other hand, domain decomposition approaches have been well established for many classic time integration methods, but not enough attention and work have been devoted to exponential integrators. This project involves a thorough study on the development and analysis of iterative and noniterative localized exponential time differencing methods based on domain decomposition, with a family of time-dependent scalar diffusion equations as the prototype problem. The PI will also apply the developed methods to study some phase field models for multi-component and multi-phase systems arising from materials science and petroleum engineering. This project would offer new insights through numerical investigations to the understanding of the macroscopic properties and reliability of alloys and the physical phenomena (such as liquid droplets, gas bubbles, and capillary pressure) of hydrocarbon fluids.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多重要的物理现象是通过半线性或完全非线性进化的部分微分方程来建模的。该项目的总体目标是通过设计和分析高度可扩展的局部指数时间差异方法来提高基于指数积分的方法来解决这些方程的效率和可扩展性,并将其应用于数值模拟和研究科学和工程中的广泛相关应用问题。拟议的工作具有实践意义,具有重大影响,因为开发的方法在现代超级计算机系统上具有高度扩展性,并且可以作为模拟这些严重问题的有效,准确和稳定的计算工具。该项目产生的直接和变革性创新将大大改善许多领域的建模和计算能力,例如设计新材料的设计以及从破裂的油库中回收的油。 In addition, this project will also offer a unique educational opportunity for graduate students with interests in computational and applied mathematics by having them participate in an interdisciplinary research environment.Direct parallelization of global exponential time differencing methods is often very hard to be scalable on massively distributed systems due to the intensive data communications needed by fast Fourier transform or by Krylov subspace-based calculations for products of matrix exponentials and vectors.另一方面,针对许多经典的时间整合方法已经建立了域的分解方法,但没有足够的关注和工作专门用于指数积分器。该项目涉及对基于域分解的迭代和非读力局部指数差异方法的开发和分析的详尽研究,其中一系列时间依赖于时间依赖的标量扩散方程作为原型问题。 PI还将应用开发的方法来研究由材料科学和石油工程产生的多组分和多相系统的某些相场模型。该项目将通过数值研究提供新的见解,以理解合金的宏观特性和可靠性,以及对碳氢化合物的物理现象(例如液滴,气泡和毛细管压力)的物理现象(例如液滴,气泡和毛细管压力)。该奖项反映了NSF的法定任务,并通过评估智能委员会和广泛的范围来评估支持者,并具有值得的支持。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Maximum Bound Principles for a Class of Semilinear Parabolic Equations and Exponential Time-Differencing Schemes
一类半线性抛物型方程的最大界原理和指数时差格式
- DOI:10.1137/19m1243750
- 发表时间:2021-06-01
- 期刊:
- 影响因子:10.2
- 作者:Du,Qiang;Ju,Lili;Qiao,Zhonghua
- 通讯作者:Qiao,Zhonghua
Convergence Analysis of Exponential Time Differencing Schemes for the Cahn-Hilliard Equation†
- DOI:10.4208/cicp.2019.js60.12
- 发表时间:2019-06
- 期刊:
- 影响因子:3.7
- 作者:Xiao Li
- 通讯作者:Xiao Li
Adaptive Exponential Time Integration of the Navier-Stokes Equations
- DOI:10.2514/6.2020-2033
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Shu-Jie Li;L. Ju;H. Si
- 通讯作者:Shu-Jie Li;L. Ju;H. Si
Exponential Time-Marching method for the Unsteady Navier-Stokes Equations
- DOI:10.2514/6.2019-0907
- 发表时间:2019-01
- 期刊:
- 影响因子:0
- 作者:Shu-Jie Li;L. Ju
- 通讯作者:Shu-Jie Li;L. Ju
Localized Exponential Time DifferencingMethod for Shallow Water Equations: Algorithms and Numerical Study
- DOI:10.4208/cicp.oa-2019-0214
- 发表时间:2021-06
- 期刊:
- 影响因子:3.7
- 作者:X. Meng
- 通讯作者:X. Meng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lili Ju其他文献
Unconditionally Energy Stable Linear Schemes for the Diffuse Interface Model with Peng–Robinson Equation of State
具有Peng-Robinson状态方程的漫反射界面模型的无条件能量稳定线性方案
- DOI:
10.1007/s10915-017-0576-7 - 发表时间:
2018 - 期刊:
- 影响因子:2.5
- 作者:
Hongwei Li;Lili Ju;Chenfei Zhang;Qiujin Peng - 通讯作者:
Qiujin Peng
Dynamically regularized Lagrange multiplier schemes with energy dissipation for the incompressible Navier-Stokes equations
- DOI:
10.1016/j.jcp.2024.113550 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:
- 作者:
Cao-Kha Doan;Thi-Thao-Phuong Hoang;Lili Ju;Rihui Lan - 通讯作者:
Rihui Lan
Conservative explicit local time-stepping schemes for the shallow water equations
浅水方程的保守显式局部时间步进方案
- DOI:
10.1016/j.jcp.2019.01.006 - 发表时间:
2019-04 - 期刊:
- 影响因子:0
- 作者:
Thi-Thao-Phuong Hoang;Wei Leng;Lili Ju;Zhu Wang;Konstantin Pieper - 通讯作者:
Konstantin Pieper
A novel bond-based nonlocal diffusion model with matrix-valued coefficients in non-divergence form and its collocation discretization<span class="inline-figure"><img src="//ars.els-cdn.com/content/image/1-s2.0-S0898122124003432-fx001.jpg" width="17" height="19" /></span>
- DOI:
10.1016/j.camwa.2024.08.002 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Hao Tian;Junke Lu;Lili Ju - 通讯作者:
Lili Ju
An accurate and asymptotically compatible collocation scheme for nonlocal diffusion problems
非局部扩散问题的精确且渐近兼容的配置方案
- DOI:
10.1016/j.apnum.2017.11.007 - 发表时间:
2017 - 期刊:
- 影响因子:2.8
- 作者:
Xiaoping Zhang;Jiming Wu;Lili Ju - 通讯作者:
Lili Ju
Lili Ju的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lili Ju', 18)}}的其他基金
Maximum Bound Principle-Preserving Time Integration Methods for Some Semilinear Parabolic Equations
一些半线性抛物方程的最大有界原理-保时积分方法
- 批准号:
2109633 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Fast and Stable Compact Exponential Time Difference Based Methods for Some Parabolic Equations
一些抛物方程的快速稳定的基于紧指数时差的方法
- 批准号:
1521965 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Numerical Improvements, Mesh Adaptation and Parameter Identification for Parallel Finite Element Stokes Ice Sheet Modeling
并行有限元斯托克斯冰盖建模的数值改进、网格自适应和参数识别
- 批准号:
1215659 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Study on Algorithms and Applications of Centroidal Voronoi Tessellations
质心Voronoi曲面细分算法及应用研究
- 批准号:
0913491 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Some Problems on Analyses and Applications of Centroidal Voronoi Tessellations
质心Voronoi曲面细分分析及应用的几个问题
- 批准号:
0609575 - 财政年份:2006
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
本地化差分隐私攻防之数据重构攻击研究
- 批准号:62372122
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
三维时空位置数据的获取与本地化隐私保护技术研究
- 批准号:62361036
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
敏感数据维度上的本地化差分隐私研究
- 批准号:62302214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
支持鲁棒聚合的本地化差分隐私保护方法
- 批准号:62272039
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
“双循环”背景下产业链本地化与全球化融合的空间动力机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
日本近現代の地域における文化財保護行政の歴史学的研究
日本近现代文化财产保护管理的历史研究
- 批准号:
24K04213 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
全地球化学組成の検証のための日本列島地殻地球ニュートリノモデリングの高度化
日本列岛地壳的复杂地中微子模型,用于验证全球地球化学成分
- 批准号:
23K25976 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
標準日本語の地域的変種における中和指向型アクセント変化の動態記述
标准日语地域变种中和导向重音变化的动态描述
- 批准号:
24K03834 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
日本語の文字言語化の地域性・地方格差に関する研究
日语书面语言的地域特征及地域差异研究
- 批准号:
24K03914 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
日本手話の地域的、社会的変異と変化に関する社会言語学的研究
日本手语的地区和社会差异及变化的社会语言学研究
- 批准号:
24KJ2188 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for JSPS Fellows