Study on Algorithms and Applications of Centroidal Voronoi Tessellations
质心Voronoi曲面细分算法及应用研究
基本信息
- 批准号:0913491
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is awarded using funds made available by the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Centroidal Voronoi tessellations (CVTs) are special Voronoi tessellations having the propertythat the generators of the Voronoi tessellations are also the centroids, with respect to a given density function, of the corresponding Voronoi cells. In this project, we will continue to investigate algorithms for computing CVTs and CVT-based applications for scientific and engineering problems. Topics of the proposed project include: study of single limit-point convergence analysis for the Lloyd's algorithm; development and analysis of nonlinear conjugate gradient methods for computing CVTs; study and implementation of parallel CVT/CVDT mesh generation on the distributed systems; improving existing CCVT-based techniques for surface meshing; incorporating these meshing schemes in adaptive solutions of partial differential equations, especially for the convection-dominated problems; and further investigation and improvement of the edge-weighted CVT model and corresponding algorithms for image segmentation that combines the intensity information in the color space of the image and the local edge information in the physical space. CVT-based methodologies have been proven to be very useful in diverse applications in the past decade, including but not limited to, image processing, vector quantization and data analysis, resource optimization, optimal placement of sensors and actuators for control, cell biology and territorial behavior of animals, high-quality point sampling, mesh generation and optimization, numerical partial differential equations, climate and atmospheric science, model reduction, computer graphics and vision, mobile sensing networks, logistics system design, and etc. The application list is still growing. The proposed project has a comprehensive coverage of algorithm design and analysis, implementation and applications of CVTs to diverse problems in science and engineering. Mathematical tools are used to analyze these techniques to give guidelines for their applicability; practical considerations including parallel implementation issues are addressed to make the algorithms competitive in real applications and large scale computations. The proposed investigation will offer new insight into the understanding of the elegant Lloyd's algorithm and it will also lead to exploration of transformative concepts and renovation of computational algorithms for many important applications involving mesh optimization, adaptive algorithms, energy minimizationand image processing based on the CVT methodologies. In addition, this project will also offer a unique educational opportunity for graduate students with interests in computational and applied mathematics, engineering and information technology by having them participate in an interdisciplinary research program.
该提案使用 2009 年美国复苏和再投资法案(公法 111-5)提供的资金授予。质心 Voronoi 曲面细分 (CVT) 是特殊的 Voronoi 曲面细分,其具有这样的属性:相对于给定的密度函数,Voronoi 曲面细分的生成器也是相应 Voronoi 单元的质心。在这个项目中,我们将继续研究计算 CVT 的算法以及基于 CVT 的科学和工程问题应用程序。拟议项目的主题包括:劳埃德算法的单极限点收敛分析研究;用于计算 CVT 的非线性共轭梯度法的开发和分析;分布式系统上并行CVT/CVDT网格生成的研究和实现;改进现有的基于 CCVT 的表面网格划分技术;将这些网格划分方案合并到偏微分方程的自适应解中,特别是对于对流主导的问题;进一步研究和改进结合图像颜色空间中的强度信息和物理空间中的局部边缘信息的边缘加权CVT模型和相应的图像分割算法。过去十年,基于 CVT 的方法已被证明在各种应用中非常有用,包括但不限于图像处理、矢量量化和数据分析、资源优化、用于控制的传感器和执行器的最佳放置、细胞生物学和领域动物行为、高质量点采样、网格生成和优化、数值偏微分方程、气候和大气科学、模型简化、计算机图形学和视觉、移动传感网络、物流系统设计等,应用范围仍在不断增长。该项目全面涵盖了算法设计和分析、CVT 的实现和应用,以解决科学和工程中的各种问题。数学工具用于分析这些技术,为其适用性提供指导;解决了包括并行实现问题在内的实际考虑因素,以使算法在实际应用和大规模计算中具有竞争力。拟议的研究将为理解优雅的劳埃德算法提供新的见解,并且还将导致对许多重要应用的变革概念和计算算法的革新,这些应用涉及网格优化、自适应算法、能量最小化和基于 CVT 方法的图像处理。此外,该项目还将通过让对计算和应用数学、工程和信息技术感兴趣的研究生参与跨学科研究项目,为他们提供独特的教育机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lili Ju其他文献
Conservative explicit local time-stepping schemes for the shallow water equations
浅水方程的保守显式局部时间步进方案
- DOI:
10.1016/j.jcp.2019.01.006 - 发表时间:
2019-04 - 期刊:
- 影响因子:0
- 作者:
Thi-Thao-Phuong Hoang;Wei Leng;Lili Ju;Zhu Wang;Konstantin Pieper - 通讯作者:
Konstantin Pieper
Unconditionally Energy Stable Linear Schemes for the Diffuse Interface Model with Peng–Robinson Equation of State
具有Peng-Robinson状态方程的漫反射界面模型的无条件能量稳定线性方案
- DOI:
10.1007/s10915-017-0576-7 - 发表时间:
2018 - 期刊:
- 影响因子:2.5
- 作者:
Hongwei Li;Lili Ju;Chenfei Zhang;Qiujin Peng - 通讯作者:
Qiujin Peng
Overlapping domain decomposition based exponential time differencing methods for semilinear parabolic equations
基于重叠域分解的半线性抛物型方程指数时间差分法
- DOI:
10.1007/s10543-020-00817-0 - 发表时间:
2020-06 - 期刊:
- 影响因子:1.5
- 作者:
Xiao Li;Lili Ju;Thi-Thao-Phuong Hoang - 通讯作者:
Thi-Thao-Phuong Hoang
An accurate and asymptotically compatible collocation scheme for nonlocal diffusion problems
非局部扩散问题的精确且渐近兼容的配置方案
- DOI:
10.1016/j.apnum.2017.11.007 - 发表时间:
2017 - 期刊:
- 影响因子:2.8
- 作者:
Xiaoping Zhang;Jiming Wu;Lili Ju - 通讯作者:
Lili Ju
Covolume-upwind finite volume approximations for linear elliptic partial differential equations
线性椭圆偏微分方程的共体积-迎风有限体积近似
- DOI:
10.1016/j.jcp.2012.05.004 - 发表时间:
2012-07 - 期刊:
- 影响因子:4.1
- 作者:
Lili Ju;Li Tian;Xiao Xiao;Weidong Zhao - 通讯作者:
Weidong Zhao
Lili Ju的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lili Ju', 18)}}的其他基金
Maximum Bound Principle-Preserving Time Integration Methods for Some Semilinear Parabolic Equations
一些半线性抛物方程的最大有界原理-保时积分方法
- 批准号:
2109633 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Study on Localized Exponential Time Differencing Methods for Evolution Partial Differential Equations
演化偏微分方程的局部指数时差法研究
- 批准号:
1818438 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Fast and Stable Compact Exponential Time Difference Based Methods for Some Parabolic Equations
一些抛物方程的快速稳定的基于紧指数时差的方法
- 批准号:
1521965 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Numerical Improvements, Mesh Adaptation and Parameter Identification for Parallel Finite Element Stokes Ice Sheet Modeling
并行有限元斯托克斯冰盖建模的数值改进、网格自适应和参数识别
- 批准号:
1215659 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Some Problems on Analyses and Applications of Centroidal Voronoi Tessellations
质心Voronoi曲面细分分析及应用的几个问题
- 批准号:
0609575 - 财政年份:2006
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
强磁场作用下两相铁磁流体动力学相场模型的高精度数值算法研究
- 批准号:12361074
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Ten-Fold Resolution Boost for Magnetic Particle Imaging with Applications to Rapid, Non-Invasive Imaging of CAR-T Cell Therapies, Stroke, GI Bleeds and Pulmonary Embolisms
磁粒子成像分辨率提高十倍,应用于 CAR-T 细胞疗法、中风、胃肠道出血和肺栓塞的快速、非侵入性成像
- 批准号:
10714021 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Statistical Methods for Data Integration and Applications to Genome-wide Association Studies
数据集成的统计方法及其在全基因组关联研究中的应用
- 批准号:
10889298 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Sieve based full likelihood approach for the Cox proportional hazards model with applications to immunotherapies trials
基于筛法的 Cox 比例风险模型的完全似然法及其在免疫治疗试验中的应用
- 批准号:
10577723 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Noninvasive Repositioning of Kidney Stone Fragments with Acoustic Forceps
用声学钳无创重新定位肾结石碎片
- 批准号:
10589666 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Development of an INSPIRE System for the Treatment of Inoperable Liver Tumors
开发用于治疗无法手术的肝脏肿瘤的 INSPIRE 系统
- 批准号:
10560677 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别: