Fast and Stable Compact Exponential Time Difference Based Methods for Some Parabolic Equations
一些抛物方程的快速稳定的基于紧指数时差的方法
基本信息
- 批准号:1521965
- 负责人:
- 金额:$ 20.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop and analyze fast, stable, and accurate methods for numerical solutions of a family of parabolic equations that appear in diverse applications in science and engineering. The research will lead to production of very efficient and effective computational tools for problems typified by phase transition modeling, chemical reactions, population dynamics, cell membrane modeling, molecular beam epitaxy, fluid dynamics, and light propagation. The well-designed robust high-order algorithms would allow researchers to accurately catch the dynamics of these systems without high computational costs. This project also offers new insights into the understanding of the kinetic processes of microstructure coarsening, shape transformation of membrane lipid vesicles, and epitaxial growth of thin films through extensive numerical simulations. Graduate students will be directly involved in and benefit from their participation in the frontier research. Although exponential time integrator based techniques have been widely researched in the literature for solving semilinear or nonlinear parabolic equations of different orders, there still lack careful numerical and theoretical studies on accurate and stable treatments of stiff nonlinearities, direct and explicit incorporation of various inhomogeneous boundary conditions, and corresponding fast implementation algorithms. The methods in this project are explicit in nature, and they will utilize compact representations of high-order finite differences or spectral approximations for spatial operators in a rectangular domain, exponential multistep or Runge-Kutta approximations for accurate time integrations of boundary and stiff nonlinear terms, linear splitting schemes for effectively enhancing numerical stabilities, and FFT-based fast calculations for greatly reducing computational costs. The research will systematically study several techniques for improving accuracy and efficiency of the compact exponential time differencing methods in both space and time, and develop energy stability and error analyses for these schemes. The project will also generalize and apply these methods to some important problems arising from the study of some biological and physical phenomena, such as phase field bending energy models for cell membrane shape transformation and molecular beam epitaxy models for thin film growth.
该项目的目标是开发和分析快速、稳定和准确的方法,用于科学和工程中不同应用中出现的一系列抛物线方程的数值解。该研究将为相变建模、化学反应、群体动力学、细胞膜建模、分子束外延、流体动力学和光传播等典型问题产生非常高效和有效的计算工具。精心设计的鲁棒高阶算法将使研究人员能够准确地捕捉这些系统的动态,而无需高昂的计算成本。该项目还通过广泛的数值模拟,为理解微观结构粗化、膜脂囊泡形状转变和薄膜外延生长的动力学过程提供了新的见解。研究生将直接参与前沿研究并从中受益。尽管文献中已经广泛研究了基于指数时间积分器的技术来求解不同阶的半线性或非线性抛物型方程,但仍然缺乏对刚性非线性的精确和稳定处理、直接和显式结合各种非齐次边界条件的仔细的数值和理论研究,以及相应的快速实现算法。该项目中的方法本质上是明确的,它们将利用高阶有限差分的紧凑表示或矩形域中空间算子的谱近似、指数多步或龙格-库塔近似来实现边界和刚性非线性项的精确时间积分,有效增强数值稳定性的线性分裂方案,以及大大降低计算成本的基于FFT的快速计算。该研究将系统地研究几种提高紧凑指数时间差分方法在空间和时间上的精度和效率的技术,并对这些方案进行能量稳定性和误差分析。 该项目还将推广并应用这些方法到一些生物和物理现象研究中产生的一些重要问题,例如细胞膜形状转变的相场弯曲能量模型和薄膜生长的分子束外延模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lili Ju其他文献
Conservative explicit local time-stepping schemes for the shallow water equations
浅水方程的保守显式局部时间步进方案
- DOI:
10.1016/j.jcp.2019.01.006 - 发表时间:
2019-04 - 期刊:
- 影响因子:0
- 作者:
Thi-Thao-Phuong Hoang;Wei Leng;Lili Ju;Zhu Wang;Konstantin Pieper - 通讯作者:
Konstantin Pieper
Unconditionally Energy Stable Linear Schemes for the Diffuse Interface Model with Peng–Robinson Equation of State
具有Peng-Robinson状态方程的漫反射界面模型的无条件能量稳定线性方案
- DOI:
10.1007/s10915-017-0576-7 - 发表时间:
2018 - 期刊:
- 影响因子:2.5
- 作者:
Hongwei Li;Lili Ju;Chenfei Zhang;Qiujin Peng - 通讯作者:
Qiujin Peng
Overlapping domain decomposition based exponential time differencing methods for semilinear parabolic equations
基于重叠域分解的半线性抛物型方程指数时间差分法
- DOI:
10.1007/s10543-020-00817-0 - 发表时间:
2020-06 - 期刊:
- 影响因子:1.5
- 作者:
Xiao Li;Lili Ju;Thi-Thao-Phuong Hoang - 通讯作者:
Thi-Thao-Phuong Hoang
An accurate and asymptotically compatible collocation scheme for nonlocal diffusion problems
非局部扩散问题的精确且渐近兼容的配置方案
- DOI:
10.1016/j.apnum.2017.11.007 - 发表时间:
2017 - 期刊:
- 影响因子:2.8
- 作者:
Xiaoping Zhang;Jiming Wu;Lili Ju - 通讯作者:
Lili Ju
Covolume-upwind finite volume approximations for linear elliptic partial differential equations
线性椭圆偏微分方程的共体积-迎风有限体积近似
- DOI:
10.1016/j.jcp.2012.05.004 - 发表时间:
2012-07 - 期刊:
- 影响因子:4.1
- 作者:
Lili Ju;Li Tian;Xiao Xiao;Weidong Zhao - 通讯作者:
Weidong Zhao
Lili Ju的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lili Ju', 18)}}的其他基金
Maximum Bound Principle-Preserving Time Integration Methods for Some Semilinear Parabolic Equations
一些半线性抛物方程的最大有界原理-保时积分方法
- 批准号:
2109633 - 财政年份:2021
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
Study on Localized Exponential Time Differencing Methods for Evolution Partial Differential Equations
演化偏微分方程的局部指数时差法研究
- 批准号:
1818438 - 财政年份:2018
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
Numerical Improvements, Mesh Adaptation and Parameter Identification for Parallel Finite Element Stokes Ice Sheet Modeling
并行有限元斯托克斯冰盖建模的数值改进、网格自适应和参数识别
- 批准号:
1215659 - 财政年份:2012
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
Study on Algorithms and Applications of Centroidal Voronoi Tessellations
质心Voronoi曲面细分算法及应用研究
- 批准号:
0913491 - 财政年份:2009
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
Some Problems on Analyses and Applications of Centroidal Voronoi Tessellations
质心Voronoi曲面细分分析及应用的几个问题
- 批准号:
0609575 - 财政年份:2006
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
相似国自然基金
BCLAF1通过YTHDF2调控RNA稳定性促进食管鳞癌代谢重编程的机制研究
- 批准号:82372680
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
免耕土壤有机质稳定组分对植物输入的差异响应
- 批准号:42377339
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
油菜种植和养蜂活动对高寒草地植物-传粉者互作网络稳定性和传粉成功的影响
- 批准号:32370229
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
HJURP调控PRDX1增加雄激素受体蛋白稳定性导致前列腺癌细胞对恩扎卢胺耐药的机制
- 批准号:82373188
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
高效稳定的多孔配位聚合物膜的研制及电合成过氧化氢
- 批准号:22375223
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Analysis of ultra-stable carbene-gold surface kinetics using a custom-built compact SPR sensor.
使用定制的紧凑型 SPR 传感器分析超稳定卡宾-金表面动力学。
- 批准号:
476228-2015 - 财政年份:2017
- 资助金额:
$ 20.1万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of ultra-compact magnetic levitation artificial heart with highly efficient and stable magnetic levitation ability based on magnetic and mechanical characteristics
基于磁力学特性开发具有高效稳定磁悬浮能力的超小型磁悬浮人工心脏
- 批准号:
16K18044 - 财政年份:2016
- 资助金额:
$ 20.1万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analysis of ultra-stable carbene-gold surface kinetics using a custom-built compact SPR sensor.
使用定制的紧凑型 SPR 传感器分析超稳定卡宾-金表面动力学。
- 批准号:
476228-2015 - 财政年份:2015
- 资助金额:
$ 20.1万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Kuranishi structures on moduli spaces of stable maps in non-compact symplectic manifolds
非紧辛流形稳定映射模空间上的 Kuranishi 结构
- 批准号:
15K04850 - 财政年份:2015
- 资助金额:
$ 20.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)