Laboratory of semiconducting and photoactive "post-graphene" 2D materials, nanomaterials and nanocomposites

半导体和光活性“后石墨烯”二维材料、纳米材料和纳米复合材料实验室

基本信息

  • 批准号:
    RGPIN-2020-06669
  • 负责人:
  • 金额:
    $ 2.99万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Visible light, with wavelength between 400 nm and 700 nm, is at the core of optical sciences because it is simple to generate, reflect, transmit and detect it in so many different ways. Virtually any visible-light optical instrument available in everyday's life utilizes radiation that propagates at large distances over the size of the source that generates it. Unfortunately, this "far-field" optics is inherently limited by diffraction in the ability to resolve very small objects, with a resolving power no much less than a wavelength. This indicates that visible light in the far-field is unsuitable for the precise analysis of nanomaterials, quantum dots, and two-dimensional (2D) materials, in which spatial confinement below 1-100 nm is critical and has the potential of unique breakthroughs in terms of new physics and devices. Examples of new devices in which confinement effects are vital include: advanced solar cells that will make energy conversion cleaner, digital memory devices to make our big-data society simpler, nanoporous water filters to clean our environment, and heat spreaders to improve the lifetime of our portable electronics. We have acquired the skills to fabricate many of these devices in-house and, as a team of physicists, we are using proof-of-concept device prototypes to better understand the performance of specific materials incorporated into them. The most fundamental aspects of our research focus on the use of "near-field" visible radiation generated in the proximity of a nano-optical source to overcome diffraction, probe light-matter interaction at the nanoscale, and precisely infer the properties of specific 2D materials, nanomaterials and nanocomposites. We have unique expertise in aperture-type scanning near-field optical microscopy (SNOM) a near-field technique in which atomic force microscopy (AFM) cantilevers with sub-wavelength apertures drilled into them are used to generate localized near-field radiation and scan a sample in the close proximity of this source. Many optical techniques so far implemented only in the far-field will thus be extended to the near-field. The discovery of graphene, a 2D material entirely formed by carbon atoms, has spurred tremendous interest towards the potential of flat materials with confinement along the z-axis, but the next-generation of "post-graphene" 2D materials is still awaiting the most appropriate tools to be analyzed, manipulated and incorporated into proof-of-concept devices to understand their optical properties with high precision. Here, special emphasis will be placed on those 2D materials, nanomaterials and nanocomposites that, differently from graphene, exhibit semiconducting and photoactive properties, such as carbon quantum dots, aerogels, and 2D transition metal oxides and chalcogenides. SNOM tools capable of analyzing these systems are exciting and ideal to train the next-generation of diverse, inclusive and highly-qualified personnel in nano-optics and nano-physics.
可见光在400 nm至700 nm之间的可见光是光学科学的核心,因为它易于以许多不同的方式生成,反射,传输和检测到它。实际上,日常生活中可用的任何可见光仪器都利用辐射在产生它的源源的大小上大大传播。不幸的是,这种“远场”光学固有地受到解决非常小的对象的衍射的限制,而解决的能力也不少于波长。这表明远场中的可见光不适合对纳米材料,量子点和二维(2D)材料进行精确分析,在该材料中,在1-100 nm以下的空间限制至关重要,并且在新物理学和设备方面具有独特的突破。限制效果至关重要的新设备的示例包括:先进的太阳能电池,这些太阳能电池将使能量转换更清洁,数字记忆设备使我们的大数据社会更简单,纳米孔滤水器来清洁我们的环境,并提高散布我们的可移植电子的寿命。我们已经获得了在内部制造许多此类设备的技能,作为一组物理学家,我们使用概念验证设备原型来更好地了解其中包含的特定材料的性能。我们研究的最根本方面集中在使用纳米光源源以克服衍射,纳米级的探测光互动的近端产生的“近场”可见辐射,并精确地推断出特定2D材料,纳米材料,纳米材料和纳米复合材料的性质。我们在光圈型扫描近场光学显微镜(SNOM)方面具有独特的专业知识,其中一种近场技术,其中原子力显微镜(AFM)悬臂具有钻入其中的亚波长孔,用于生成局部化的近场辐射,并扫描了此源的近距离范围。因此,迄今仅在远场实施的许多光学技术将扩展到近场。发现石墨烯是一种完全由碳原子形成的2D材料,激发了人们对沿Z轴限制的平坦材料潜力的巨大兴趣,但是“涂印后” 2D材料的下一代仍在等待最合适的工具,以分析,操纵和融合到卓越的设备中,以了解其优先级的设备,以使其具有高度的精确性。在这里,将特别重点放在那些2D材料,纳米材料和纳米复合材料上,这些材料与石墨烯的不同,具有半导体和光活性特性,例如碳量子点,气凝胶和2D过渡金属氧化物和2D过渡金属氧化物和chalcogenides。能够分析这些系统的SNOM工具令人兴奋,非常理想,可以在纳米式和纳米物理学中培训各种,包容和高度合格的人员的下一代。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fanchini, Giovanni其他文献

Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization
  • DOI:
    10.1063/1.2715027
  • 发表时间:
    2007-03-19
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Parekh, Bhavin B.;Fanchini, Giovanni;Chhowalla, Manish
  • 通讯作者:
    Chhowalla, Manish
Relationship between electrical and thermal conductivity in graphene-based transparent and conducting thin films
  • DOI:
    10.1016/j.carbon.2013.05.041
  • 发表时间:
    2013-09-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Ahmed, M. Shafiq;Ezugwu, Sabastine;Fanchini, Giovanni
  • 通讯作者:
    Fanchini, Giovanni
Bundling dynamics of single walled carbon nanotubes in aqueous suspensions
  • DOI:
    10.1063/1.2919164
  • 发表时间:
    2008-05-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Eda, Goki;Fanchini, Giovanni;Chhowalla, Manish
  • 通讯作者:
    Chhowalla, Manish
Optical anisotropy in single-walled carbon nanotube thin films: Implications for transparent and conducting electrodes in organic photovoltaics
  • DOI:
    10.1021/nl080563p
  • 发表时间:
    2008-08-01
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Fanchini, Giovanni;Miller, Steve;Chhowalla, Manish
  • 通讯作者:
    Chhowalla, Manish
In situ monitoring of structural changes in boron carbide under electric fields
  • DOI:
    10.1111/j.1551-2916.2008.02488.x
  • 发表时间:
    2008-08-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Fanchini, Giovanni;Gupta, Varun;Chhowalla, Manish
  • 通讯作者:
    Chhowalla, Manish

Fanchini, Giovanni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fanchini, Giovanni', 18)}}的其他基金

Laboratory of semiconducting and photoactive "post-graphene" 2D materials, nanomaterials and nanocomposites
半导体和光活性“后石墨烯”二维材料、纳米材料和纳米复合材料实验室
  • 批准号:
    RGPIN-2020-06669
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Laboratory of semiconducting and photoactive "post-graphene" 2D materials, nanomaterials and nanocomposites
半导体和光活性“后石墨烯”二维材料、纳米材料和纳米复合材料实验室
  • 批准号:
    RGPIN-2020-06669
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Vacuum polyradical deposition (VPRD) techniques for specialty nanoelectronics
用于特种纳米电子学的真空多自由基沉积 (VPRD) 技术
  • 批准号:
    506356-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Strategic Projects - Group
Carbon-based Nanomaterials and Nano-optoelectronics
碳基纳米材料与纳米光电子学
  • 批准号:
    1000229984-2013
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Canada Research Chairs
Urgent repair and upgrade of high-vacuum variable-temperature scanning probe microscope
高真空变温扫描探针显微镜紧急维修升级
  • 批准号:
    RTI-2020-00706
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Research Tools and Instruments
Laboratory of transparent, conducting, photo-active and carbon-based thin films
透明、导电、光活性和碳基薄膜实验室
  • 批准号:
    RGPIN-2015-06004
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Carbon-based Nanomaterials and Nano-optoelectronics
碳基纳米材料与纳米光电子学
  • 批准号:
    1000229984-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Canada Research Chairs
Vacuum polyradical deposition (VPRD) techniques for specialty nanoelectronics
用于特种纳米电子学的真空多自由基沉积 (VPRD) 技术
  • 批准号:
    506356-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Strategic Projects - Group
Laboratory of transparent, conducting, photo-active and carbon-based thin films
透明、导电、光活性和碳基薄膜实验室
  • 批准号:
    RGPIN-2015-06004
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Vacuum polyradical deposition (VPRD) techniques for specialty nanoelectronics
用于特种纳米电子学的真空多自由基沉积 (VPRD) 技术
  • 批准号:
    506356-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Strategic Projects - Group

相似国自然基金

高光活性硫属半导体磁光纳米材料的精准合成、手性解析以及性能研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
高光活性II-VI型半导体纳米晶的合成及其圆二色光谱解析
  • 批准号:
    21805188
  • 批准年份:
    2018
  • 资助金额:
    27.5 万元
  • 项目类别:
    青年科学基金项目
等离激元杂化纳米材料可见-近红外光活性增强作用机制与相关应用
  • 批准号:
    51772256
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于四嗪为受体单元的光电活性有机小分子的合成和光伏性能研究
  • 批准号:
    21402042
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
光活性水氧化人工酶分子器件的设计、组装和性能研究
  • 批准号:
    21003017
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A general strategy to synthesize semiconducting polymers within one minute
一分钟内合成半导体聚合物的一般策略
  • 批准号:
    24K08518
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Correlated Excitons in Semiconducting Moire Superlattices
职业:半导体莫尔超晶格中的相关激子
  • 批准号:
    2337606
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
ERI: Development of light-emitting devices having intensive quantum-optical properties using a low-dimensional semiconducting material
ERI:使用低维半导体材料开发具有强量子光学特性的发光器件
  • 批准号:
    2301580
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
Construction of Phenacene Molecules having Semiconducting and Photo-luminescent Natures
具有半导体和光致发光性质的菲并烯分子的构建
  • 批准号:
    23K04877
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Symmetry-directed Epitaxy Growth of 2D Semiconducting Transition Metal Dichalcogenides with continuous single crystallinity and ultralow defect density
具有连续单晶度和超低缺陷密度的二维半导体过渡金属二硫属化物的对称定向外延生长
  • 批准号:
    23H00253
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了