Laboratory of semiconducting and photoactive "post-graphene" 2D materials, nanomaterials and nanocomposites
半导体和光活性“后石墨烯”二维材料、纳米材料和纳米复合材料实验室
基本信息
- 批准号:RGPIN-2020-06669
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Visible light, with wavelength between 400 nm and 700 nm, is at the core of optical sciences because it is simple to generate, reflect, transmit and detect it in so many different ways. Virtually any visible-light optical instrument available in everyday's life utilizes radiation that propagates at large distances over the size of the source that generates it. Unfortunately, this "far-field" optics is inherently limited by diffraction in the ability to resolve very small objects, with a resolving power no much less than a wavelength. This indicates that visible light in the far-field is unsuitable for the precise analysis of nanomaterials, quantum dots, and two-dimensional (2D) materials, in which spatial confinement below 1-100 nm is critical and has the potential of unique breakthroughs in terms of new physics and devices. Examples of new devices in which confinement effects are vital include: advanced solar cells that will make energy conversion cleaner, digital memory devices to make our big-data society simpler, nanoporous water filters to clean our environment, and heat spreaders to improve the lifetime of our portable electronics. We have acquired the skills to fabricate many of these devices in-house and, as a team of physicists, we are using proof-of-concept device prototypes to better understand the performance of specific materials incorporated into them. The most fundamental aspects of our research focus on the use of "near-field" visible radiation generated in the proximity of a nano-optical source to overcome diffraction, probe light-matter interaction at the nanoscale, and precisely infer the properties of specific 2D materials, nanomaterials and nanocomposites. We have unique expertise in aperture-type scanning near-field optical microscopy (SNOM) a near-field technique in which atomic force microscopy (AFM) cantilevers with sub-wavelength apertures drilled into them are used to generate localized near-field radiation and scan a sample in the close proximity of this source. Many optical techniques so far implemented only in the far-field will thus be extended to the near-field. The discovery of graphene, a 2D material entirely formed by carbon atoms, has spurred tremendous interest towards the potential of flat materials with confinement along the z-axis, but the next-generation of "post-graphene" 2D materials is still awaiting the most appropriate tools to be analyzed, manipulated and incorporated into proof-of-concept devices to understand their optical properties with high precision. Here, special emphasis will be placed on those 2D materials, nanomaterials and nanocomposites that, differently from graphene, exhibit semiconducting and photoactive properties, such as carbon quantum dots, aerogels, and 2D transition metal oxides and chalcogenides. SNOM tools capable of analyzing these systems are exciting and ideal to train the next-generation of diverse, inclusive and highly-qualified personnel in nano-optics and nano-physics.
波长在 400 nm 至 700 nm 之间的可见光是光学科学的核心,因为它很容易以多种不同的方式产生、反射、传输和检测。事实上,日常生活中可用的任何可见光光学仪器都利用辐射,该辐射在产生辐射的光源的尺寸上传播很远的距离。不幸的是,这种“远场”光学器件本质上受到衍射的限制,无法分辨非常小的物体,其分辨能力不小于波长。这表明远场可见光不适合纳米材料、量子点和二维(2D)材料的精确分析,其中1-100 nm以下的空间限制至关重要,并且具有独特突破的潜力。新物理和新设备的术语。限制效应至关重要的新设备的例子包括:使能量转换更清洁的先进太阳能电池、使我们的大数据社会更简单的数字存储设备、清洁环境的纳米多孔水过滤器,以及提高设备寿命的散热器。我们的便携式电子产品。我们已经掌握了在内部制造许多此类设备的技能,并且作为一个物理学家团队,我们正在使用概念验证设备原型来更好地了解其中包含的特定材料的性能。我们研究的最基本方面集中于使用纳米光源附近产生的“近场”可见辐射来克服衍射,探测纳米尺度的光与物质相互作用,并精确推断特定二维的属性材料、纳米材料和纳米复合材料。我们在孔径型扫描近场光学显微镜 (SNOM) 方面拥有独特的专业知识,这是一种近场技术,其中钻有亚波长孔径的原子力显微镜 (AFM) 悬臂用于产生局部近场辐射并扫描靠近该源的样本。因此,迄今为止仅在远场实现的许多光学技术将扩展到近场。石墨烯是一种完全由碳原子形成的二维材料,它的发现激发了人们对沿 z 轴限制的平面材料潜力的极大兴趣,但下一代“后石墨烯”二维材料仍在等待着人们的关注。需要分析、操作并整合到概念验证设备中的适当工具,以高精度地了解其光学特性。这里,将特别重点关注那些与石墨烯不同的、表现出半导体和光活性特性的二维材料、纳米材料和纳米复合材料,例如碳量子点、气凝胶以及二维过渡金属氧化物和硫属化物。能够分析这些系统的 SNOM 工具令人兴奋,也是培训下一代纳米光学和纳米物理学领域多样化、包容性和高素质人才的理想选择。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fanchini, Giovanni其他文献
Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization
- DOI:
10.1063/1.2715027 - 发表时间:
2007-03-19 - 期刊:
- 影响因子:4
- 作者:
Parekh, Bhavin B.;Fanchini, Giovanni;Chhowalla, Manish - 通讯作者:
Chhowalla, Manish
Relationship between electrical and thermal conductivity in graphene-based transparent and conducting thin films
- DOI:
10.1016/j.carbon.2013.05.041 - 发表时间:
2013-09-01 - 期刊:
- 影响因子:10.9
- 作者:
Ahmed, M. Shafiq;Ezugwu, Sabastine;Fanchini, Giovanni - 通讯作者:
Fanchini, Giovanni
Bundling dynamics of single walled carbon nanotubes in aqueous suspensions
- DOI:
10.1063/1.2919164 - 发表时间:
2008-05-01 - 期刊:
- 影响因子:3.2
- 作者:
Eda, Goki;Fanchini, Giovanni;Chhowalla, Manish - 通讯作者:
Chhowalla, Manish
Optical anisotropy in single-walled carbon nanotube thin films: Implications for transparent and conducting electrodes in organic photovoltaics
- DOI:
10.1021/nl080563p - 发表时间:
2008-08-01 - 期刊:
- 影响因子:10.8
- 作者:
Fanchini, Giovanni;Miller, Steve;Chhowalla, Manish - 通讯作者:
Chhowalla, Manish
In situ monitoring of structural changes in boron carbide under electric fields
- DOI:
10.1111/j.1551-2916.2008.02488.x - 发表时间:
2008-08-01 - 期刊:
- 影响因子:3.9
- 作者:
Fanchini, Giovanni;Gupta, Varun;Chhowalla, Manish - 通讯作者:
Chhowalla, Manish
Fanchini, Giovanni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fanchini, Giovanni', 18)}}的其他基金
Laboratory of semiconducting and photoactive "post-graphene" 2D materials, nanomaterials and nanocomposites
半导体和光活性“后石墨烯”二维材料、纳米材料和纳米复合材料实验室
- 批准号:
RGPIN-2020-06669 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Laboratory of semiconducting and photoactive "post-graphene" 2D materials, nanomaterials and nanocomposites
半导体和光活性“后石墨烯”二维材料、纳米材料和纳米复合材料实验室
- 批准号:
RGPIN-2020-06669 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Vacuum polyradical deposition (VPRD) techniques for specialty nanoelectronics
用于特种纳米电子学的真空多自由基沉积 (VPRD) 技术
- 批准号:
506356-2017 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Strategic Projects - Group
Carbon-based Nanomaterials and Nano-optoelectronics
碳基纳米材料与纳米光电子学
- 批准号:
1000229984-2013 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Canada Research Chairs
Urgent repair and upgrade of high-vacuum variable-temperature scanning probe microscope
高真空变温扫描探针显微镜紧急维修升级
- 批准号:
RTI-2020-00706 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Research Tools and Instruments
Laboratory of transparent, conducting, photo-active and carbon-based thin films
透明、导电、光活性和碳基薄膜实验室
- 批准号:
RGPIN-2015-06004 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Carbon-based Nanomaterials and Nano-optoelectronics
碳基纳米材料与纳米光电子学
- 批准号:
1000229984-2013 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Canada Research Chairs
Vacuum polyradical deposition (VPRD) techniques for specialty nanoelectronics
用于特种纳米电子学的真空多自由基沉积 (VPRD) 技术
- 批准号:
506356-2017 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Strategic Projects - Group
Laboratory of transparent, conducting, photo-active and carbon-based thin films
透明、导电、光活性和碳基薄膜实验室
- 批准号:
RGPIN-2015-06004 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Vacuum polyradical deposition (VPRD) techniques for specialty nanoelectronics
用于特种纳米电子学的真空多自由基沉积 (VPRD) 技术
- 批准号:
506356-2017 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Strategic Projects - Group
相似国自然基金
“双循环”背景下第三代半导体创新网络的竞合效应:基于边界拓展和跨网联动的考察
- 批准号:72303054
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不确定单机批调度及其结合先进过程控制(APC)在半导体制造中的应用
- 批准号:72301177
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于光增强新型类皮肤有机半导体复合器件的接近探测研究
- 批准号:62375046
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高阶拓扑局域光场调控及其与低维半导体激子的耦合研究
- 批准号:12304431
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
- 批准号:62374057
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
A general strategy to synthesize semiconducting polymers within one minute
一分钟内合成半导体聚合物的一般策略
- 批准号:
24K08518 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Correlated Excitons in Semiconducting Moire Superlattices
职业:半导体莫尔超晶格中的相关激子
- 批准号:
2337606 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
ERI: Development of light-emitting devices having intensive quantum-optical properties using a low-dimensional semiconducting material
ERI:使用低维半导体材料开发具有强量子光学特性的发光器件
- 批准号:
2301580 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Construction of Phenacene Molecules having Semiconducting and Photo-luminescent Natures
具有半导体和光致发光性质的菲并烯分子的构建
- 批准号:
23K04877 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetry-directed Epitaxy Growth of 2D Semiconducting Transition Metal Dichalcogenides with continuous single crystallinity and ultralow defect density
具有连续单晶度和超低缺陷密度的二维半导体过渡金属二硫属化物的对称定向外延生长
- 批准号:
23H00253 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (A)